期刊文献+
共找到699篇文章
< 1 2 35 >
每页显示 20 50 100
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:2
1
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小二乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于粒子群优化-支持向量机方法的下肢肌电信号步态识别 被引量:20
2
作者 高发荣 王佳佳 +2 位作者 席旭刚 佘青山 罗志增 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1154-1159,共6页
为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数... 为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数,最后利用步态动作的肌电信号样本数据对构造的SVM分类器进行训练、测试。实验结果表明PSO-SVM分类器对下肢正常行走5个步态的识别率,明显高于未经参数优化的SVM分类器,优化后平均识别率达到97.8%,并兼顾了分类的准确性和自适应性。 展开更多
关键词 模式识别 步态分析 肌电信号 粒子优化 支持向量
在线阅读 下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测 被引量:4
3
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
在线阅读 下载PDF
基于粒子群优化-支持向量机的睡眠呼吸暂停检测 被引量:4
4
作者 张大可 马隽 +3 位作者 王立英 王钢 蔡靖 孙玉冰 《科学技术与工程》 北大核心 2022年第33期14644-14651,共8页
睡眠呼吸暂停(sleep apnea,SA)是一种睡眠障碍疾病,严重影响睡眠质量和身体健康。为降低睡眠呼吸障碍检测的复杂度并提高准确率,提出了一种粒子群优化-支持向量机(particle swarm optimization-support vector machine,PSO-SVM)方法,通... 睡眠呼吸暂停(sleep apnea,SA)是一种睡眠障碍疾病,严重影响睡眠质量和身体健康。为降低睡眠呼吸障碍检测的复杂度并提高准确率,提出了一种粒子群优化-支持向量机(particle swarm optimization-support vector machine,PSO-SVM)方法,通过心电信号实现对SA的准确检测。首先,将心电信号分段,并从中提取心率变异性;其次,实现特征提取与选择,包含心电信号RR间期的均值、标准差、均值标准差、差值均方的平方、心率变异性的信号总功率、低频段功率、高频段功率、瞬时中位频率、边际谱熵和能量谱熵等;最后,通过PSO-SVM分类算法进行睡眠呼吸暂停检测。结果表明,筛选10个特征对SA进行检测,利用Apnea-ECG数据库通过PSO-SVM的检测准确率为94.0%,提升了现有方法的检测性能。 展开更多
关键词 睡眠呼吸暂停 心电信号 粒子优化 支持向量
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:124
5
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小二乘支持向量 多类分类 粒子优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
基于粒子群优化算法的支持向量机参数选择及其应用 被引量:130
6
作者 邵信光 杨慧中 陈刚 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期740-743,748,共5页
参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该... 参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该方法的有效性后,用其建立了聚丙烯腈生产过程中数均分子量的软测量模型,结果表明该方法有效. 展开更多
关键词 支持向量 参数选择 粒子优化 聚丙烯腈 软测量
在线阅读 下载PDF
一种自主核优化的二值粒子群优化–多核学习支持向量机变压器故障诊断方法 被引量:25
7
作者 尹玉娟 王媚 +3 位作者 张金江 袁鹏 詹俊鹏 郭创新 《电网技术》 EI CSCD 北大核心 2012年第7期249-254,共6页
支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。... 支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKSVC中的基核数及模型参数进行优化,实现了参数的自主选择。与常用诊断算法相比,BPSO-MKSVC具有更高的诊断精度;与PSO优化的SVM方法相比,其具有更低的参数敏感性和更好的鲁棒性。 展开更多
关键词 溶解气体分析 支持向量 多核学习 二值粒子优化 故障诊断 变压器
在线阅读 下载PDF
基于云粒子群-最小二乘支持向量机的传感器温度补偿 被引量:30
8
作者 张朝龙 江巨浪 +3 位作者 李彦梅 陈世军 査长礼 王陈宁 《传感技术学报》 CAS CSCD 北大核心 2012年第4期472-477,共6页
针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的... 针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的参数进行优化选择,建立CMPSO-LSSVM传感器温度补偿模型。将该模型应用于振弦式传感器的温度补偿,通过实验证明了该温度补偿方法优于当前其他主要方法。 展开更多
关键词 云模型 粒子优化 最小二乘支持向量 温度补偿
在线阅读 下载PDF
基于粗糙集和粒子群优化支持向量机的滑坡变形预测 被引量:29
9
作者 赵艳南 牛瑞卿 +1 位作者 彭令 程温鸣 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2324-2332,共9页
以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位... 以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位移速率进行预测。研究结果表明:测试样本的预测结果与实测值变化趋势基本一致,其平均绝对误差为0.234 mm/d,均方差和判定系数分别为0.163和0.520。粗糙集理论在分析滑坡变形特征、筛选关键因子方面的适用性与科学性,构建的粗糙集-粒子群优化支持向量机模型具有较高的泛化能力,是一种有效的滑坡变形预测方法。 展开更多
关键词 滑坡变形预测 粗糙集 粒子优化 支持向量
在线阅读 下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
10
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
在线阅读 下载PDF
基于粒子群优化支持向量机的变压器故障诊断 被引量:49
11
作者 费胜巍 苗玉彬 +1 位作者 刘成良 张晓斌 《高电压技术》 EI CAS CSCD 北大核心 2009年第3期509-513,共5页
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类... 为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 展开更多
关键词 故障诊断 粒子优化 支持向量 电力变压器 参数优化 分类算法 统计学习理论
在线阅读 下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
12
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
在线阅读 下载PDF
基于粒子群优化算法的支持向量机研究 被引量:51
13
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子优化算法(PSO) 支持向量(SVM) 优化 双螺旋分类 评价
在线阅读 下载PDF
粒子群优化–最小二乘支持向量机算法在高压断路器机械故障诊断中的应用 被引量:24
14
作者 贾嵘 洪刚 +1 位作者 薛建辉 崔建武 《电网技术》 EI CSCD 北大核心 2010年第3期197-200,共4页
提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,... 提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,PSO)算法,优化LSSVM算法的参数。算例表明:PSO-LSSVM算法不仅能够取得良好的分类效果,而且诊断速度与精度均高于传统的支持向量机(support vector machine,SVM)算法,适用于高压断路器机械故障诊断。 展开更多
关键词 高压断路器 最小二乘支持向量 粒子优化 故障诊断
在线阅读 下载PDF
基于粒子群优化支持向量机的电能替代潜力分析方法 被引量:33
15
作者 孙毅 石墨 +1 位作者 单葆国 曹昉 《电网技术》 EI CSCD 北大核心 2017年第6期1767-1771,共5页
"电能替代"战略可以在终端能源消费环节实现电能替代散烧煤、直燃油,最终实现能源发展方式的根本转变。为提供面向电源、电网、产能规划的理论指导,提出了基于粒子群优化支持向量机的电能替代潜力分析方法。基于多维度数据定... "电能替代"战略可以在终端能源消费环节实现电能替代散烧煤、直燃油,最终实现能源发展方式的根本转变。为提供面向电源、电网、产能规划的理论指导,提出了基于粒子群优化支持向量机的电能替代潜力分析方法。基于多维度数据定义电能替代发展的主要影响因素,通过支持向量机实现影响因素与累计电能替代量的拟合分析,并对于支持向量机参数选择进行粒子群优化,实现了对累计电能替代量的有效预测。仿真结果表明,上述方法能够显著提升预测精度,对于支持电能替代的潜力分析具有一定的指导意义。 展开更多
关键词 电能替代 支持向量 粒子优化 潜力分析
在线阅读 下载PDF
基于支持向量机和粒子群算法的产品意象造型优化设计 被引量:25
16
作者 苏建宁 赵慧娟 +1 位作者 王瑞红 张书涛 《机械设计》 CSCD 北大核心 2015年第1期105-109,共5页
为满足消费者对产品造型的感性意象需求,提出了基于支持向量机和粒子群算法的产品意象造型优化设计方法。首先确定目标意象、代表性样本和造型设计参数,进行产品感性意象调查;然后应用支持向量机获得"造型设计参数-产品感性意象&qu... 为满足消费者对产品造型的感性意象需求,提出了基于支持向量机和粒子群算法的产品意象造型优化设计方法。首先确定目标意象、代表性样本和造型设计参数,进行产品感性意象调查;然后应用支持向量机获得"造型设计参数-产品感性意象"之间的映射关系,建立产品造型意象评价系统;最后以代表性样本为初始种群,以意象评价为适应度评估,利用粒子群算法建立产品意象造型优化设计系统。以汽车轮廓优化设计进行实例研究,结果表明该方法较好地模拟了设计思维,可为产品概念设计提供有效的辅助与支持。 展开更多
关键词 产品设计 支持向量 粒子算法 意象造型 优化设计
在线阅读 下载PDF
改进粒子群算法优化的支持向量机及其应用 被引量:28
17
作者 王振武 孙佳骏 尹成峰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第12期1728-1733,共6页
传统粒子群优化(particle swarm optimization,PSO)算法主要包含两方面问题,即易陷入局部极小和后期震荡严重,为此引入混沌序列来初始化粒子群的位置,并在简化的粒子群数学模型上从两个方面对其进行了改进。本文利用改进的PSO算法对... 传统粒子群优化(particle swarm optimization,PSO)算法主要包含两方面问题,即易陷入局部极小和后期震荡严重,为此引入混沌序列来初始化粒子群的位置,并在简化的粒子群数学模型上从两个方面对其进行了改进。本文利用改进的PSO算法对支持向量机(support vector machine,SVM)的参数进行优化,仿真实验结果表明:与SVM、PSO-SVM以及遗传算法(genetic algorithm,GA)优化的SVM(GA-SVM)相比,改进PSO优化的SVM(IPSO-SVM)算法具有较高的分类准确率,并且与PSO-SVM算法相比,准确率提高了3%~5%,与PSO-SVM算法以及GA-SVM算法相比,IPSO-SVM的训练和泛化速度都明显提高。本文将IPSO-SVM算法应用到遥感影像的分类中,分类结果表明,与PSO-SVM算法相比IPSO-SVM算法具有更好的分类结果。 展开更多
关键词 粒子优化算法 混沌序列 支持向量 遥感影像
在线阅读 下载PDF
改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法 被引量:38
18
作者 张进 丁胜 李波 《计算机应用》 CSCD 北大核心 2016年第5期1330-1335,共6页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法在进行优化时易出现陷入局部最优和早熟的问题,该算法在PSO中引入遗传算法(GA)中的交叉变异算子,使粒子在每次迭代更新后进行交叉变异操作来避免这一问题。该算法通过粒子之间的不相关性指数来决定粒子之间的交叉配对,由粒子适应度值的大小决定其变异概率的大小,由此产生新的粒子进入到群体中。这样使得粒子跳出当前搜索到的局部最优位置,提高了群体的多样性,在全局范围内寻找更优值。在不同数据集上进行实验,与基于PSO和GA的特征选择和SVM参数联合优化算法相比,GPSO-SVM的分类精度平均提高了2%~3%,选择的特征数目减少了3%~15%。实验结果表明,所提算法的特征选择和参数优化效果更好。 展开更多
关键词 支持向量 特征选择 参数优化 粒子优化算法 遗传算法 不相关性指数
在线阅读 下载PDF
基于粒子群优化支持向量机的电缆温度计算 被引量:10
19
作者 牛海清 叶开发 +3 位作者 许佳 吴炬卓 罗健斌 陆国俊 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期77-83,共7页
导体温度是影响运行电缆使用寿命和材料利用率的最主要因素,也是反映电缆运行状态的参数.由于技术上尚难以实现对运行电缆导体温度的直接测量,因此有必要进行导体温度计算.文中以电流和外皮温度作为模型输入,以导体温度作为模型输出,构... 导体温度是影响运行电缆使用寿命和材料利用率的最主要因素,也是反映电缆运行状态的参数.由于技术上尚难以实现对运行电缆导体温度的直接测量,因此有必要进行导体温度计算.文中以电流和外皮温度作为模型输入,以导体温度作为模型输出,构建基于支持向量机的电缆暂态导体温度的数学模型;为提高该模型计算的精度,避免盲目选取训练参数,引入粒子群算法对其惩罚因子C和核参数γ进行寻优.仿真与试验对比结果表明:基于粒子群优化的支持向量机模型(PSO-SVM模型)可以用于电缆暂态导体温度计算,且计算误差小于热路模型和BP神经网络;模型具有良好的泛化能力. 展开更多
关键词 电缆 导体温度 支持向量 粒子优化 暂态计算
在线阅读 下载PDF
基于粒子群优化的支持向量机在瓦斯浓度预测中的应用研究 被引量:11
20
作者 张剑英 许徽 +1 位作者 陈娟 曹新德 《工矿自动化》 2010年第10期32-35,共4页
为了准确预测煤矿瓦斯浓度,基于从芦岭煤矿KJ98监控系统中提取的生产现场瓦斯浓度时间序列数据,对基于粒子群优化的支持向量机理论在瓦斯浓度短期预测中的应用进行了研究。首先对瓦斯浓度时间序列进行小波软阈值去噪和相空间重构等预处... 为了准确预测煤矿瓦斯浓度,基于从芦岭煤矿KJ98监控系统中提取的生产现场瓦斯浓度时间序列数据,对基于粒子群优化的支持向量机理论在瓦斯浓度短期预测中的应用进行了研究。首先对瓦斯浓度时间序列进行小波软阈值去噪和相空间重构等预处理,然后采用粒子群优化算法对支持向量机的惩罚因子、损失函数、核函数参数进行了优化,并基于最优参数建立了瓦斯浓度预测的支持向量机模型。仿真结果表明,采用粒子群优化的支持向量机理论进行煤矿瓦斯浓度预测,极大地提高了预测的准确性和精确度;误差分析结果表明,该方法预测结果的误差很小,且测试样本越小,误差越小。 展开更多
关键词 煤矿 瓦斯浓度 预测 支持向量 粒子优化 建模
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部