期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:3
1
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
2
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子算法 改进粒子优化-反向传播神经网络(Ipso-bpNN) 预测模型
在线阅读 下载PDF
基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型 被引量:17
3
作者 张玲 王玲 吴桐 《计算机应用》 CSCD 北大核心 2014年第3期775-779,共5页
针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传... 针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。 展开更多
关键词 热舒适度 预测 反向传播神经网络 粒子优化算法 模型
在线阅读 下载PDF
基于PSO-BP的自平衡法试桩技术平衡点位置研究
4
作者 欧孝夺 梁枫 江杰 《广西大学学报(自然科学版)》 北大核心 2025年第2期231-241,共11页
针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结... 针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结合工程实例来验证本模型的适用性。结果表明,结合粒子群算法优化的PSO-BP神经网络模型,其平衡点位置预测值与真实值的平均相对误差控制在1.93%以内,而BP神经网络的平衡点位置预测值平均相对误差最高可达14.83%;依托来宾市当地以灰岩为持力层的工程试桩数据构建的PSO-BP神经网络平衡点位置预测模型,其仿真预测结果的均方根误差(R_(MSE))为0.294,决定系数R^(2)为0.988,预测值与真实值的相对误差在3.0%以内;在工程实例的对比验证中,PSO-BP神经网络模型在平衡点位置预测上的精度高于规范经验公式法,更接近实际位置,可作为灰岩地区基桩自平衡试桩测试的平衡点位置确定的有效手段。 展开更多
关键词 自平衡法 平衡点 粒子优化-反向传播神经网络 粒子算法 灰岩
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
5
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子优化算法 反向传播 神经网络
在线阅读 下载PDF
基于优化PSO-BP算法的软件缺陷预测模型 被引量:7
6
作者 马振宇 张威 +1 位作者 毕学军 金丽亚 《计算机工程与设计》 北大核心 2016年第2期413-417,共5页
为能够高效地使用缺陷预测方法,提出一种基于优化算法的软件缺陷预测模型。基于BP算法建立模型,使用SCPSO算法优化BP的参数值,通过十折交叉的方法对结果展开分析。与PSO优化BP方法进行比较实验,比较结果表明,SC-PSO在优化BP参数值方面比... 为能够高效地使用缺陷预测方法,提出一种基于优化算法的软件缺陷预测模型。基于BP算法建立模型,使用SCPSO算法优化BP的参数值,通过十折交叉的方法对结果展开分析。与PSO优化BP方法进行比较实验,比较结果表明,SC-PSO在优化BP参数值方面比PSO更好,对软件缺陷预测有更大帮助。 展开更多
关键词 遗传算法粒子 优化算法 反向传播算法 软件缺陷 预测模型
在线阅读 下载PDF
基于PSO-BP神经网络的SiC MOSFET模块寿命预测方法研究与实现
7
作者 毛明波 孟昭亮 +1 位作者 高勇 杨媛 《电源学报》 北大核心 2025年第1期229-235,258,共8页
针对目前碳化硅金属氧化物半导体场效应晶体管Si CMOSFET(siliconcarbidemetal-oxide-semiconductor field-effect transistor)实际工况中在线寿命预测难度大的问题,提出1种基于粒子群优化-反向传播PSO-BP(particle swarm optimization-... 针对目前碳化硅金属氧化物半导体场效应晶体管Si CMOSFET(siliconcarbidemetal-oxide-semiconductor field-effect transistor)实际工况中在线寿命预测难度大的问题,提出1种基于粒子群优化-反向传播PSO-BP(particle swarm optimization-back propagation)神经网络的SiC MOSFET模块寿命预测数字化实现方法。首先,利用导通压降平台提取Si CMOSFET的导通压降作为温敏电参数,建立基于实验数据的结温预测方案;其次,利用功率循环加速老化实验平台,提取老化特征数据,建立基于PSO-BP神经网络的寿命预测方案;然后,将结温预测方案与寿命预测方案移植到可编程阵列逻辑中,实现SiC MOSFET寿命预测数字化;最后,设计了验证电路。实验表明,数字化显示的结温与真实结温的误差为4.73℃,与真实寿命次数的误差百分比为4.1%,证明所提寿命预测方法得到了数字化实现,并能够准确预测SiC MOSFET模块的寿命次数。 展开更多
关键词 SiC MOSFET 粒子优化-反向传播 寿命预测 数字化
在线阅读 下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究 被引量:2
8
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子优化算法反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
在线阅读 下载PDF
引入粒子生存值的SPSO-BP气体传感器补偿算法 被引量:5
9
作者 程洋 李柏林 +2 位作者 欧阳 罗建桥 黄翰鹏 《传感器与微系统》 CSCD 2020年第8期134-137,共4页
针对复杂环境下气体传感器的稳定性不足的问题,提出了一种基于改进反向传播(BP)神经网络的传感器补偿算法。首先建立基于温湿度补偿的BP神经网络结构,并确定各层网络的节点数。然后提出用粒子群算法(PSO)优化BP神经网络的初始权值和阈... 针对复杂环境下气体传感器的稳定性不足的问题,提出了一种基于改进反向传播(BP)神经网络的传感器补偿算法。首先建立基于温湿度补偿的BP神经网络结构,并确定各层网络的节点数。然后提出用粒子群算法(PSO)优化BP神经网络的初始权值和阈值。最后引入粒子生存值并结合模拟退火改进传统PSO算法(SPSO),提高模型的全局极值寻优能力。实验结果表明:本文改进的SPSO算法较传统的PSO算法寻优能力更强,将SPSO与BP神经网络相结合,提高了气体传感器的温湿度补偿精度。 展开更多
关键词 反向传播(BP)神经网络 粒子优化算法 粒子生存值 温湿度补偿
在线阅读 下载PDF
基于改进PSO-BP算法的快递业务量预测 被引量:18
10
作者 许荣斌 王业国 +3 位作者 王福田 何明慧 汪梦龙 谢莹 《计算机集成制造系统》 EI CSCD 北大核心 2018年第7期1871-1879,共9页
为了有效监控快递运输过程,对日常快递业务量进行预测,以保证快递包裹能够按时到达。将大量快递包裹运输过程抽象建模以构造多流程实例;提出改进惯性权重的粒子群优化算法和反向传播神经网络的组合模型(IPSO-BP)来预测物流公司日常快递... 为了有效监控快递运输过程,对日常快递业务量进行预测,以保证快递包裹能够按时到达。将大量快递包裹运输过程抽象建模以构造多流程实例;提出改进惯性权重的粒子群优化算法和反向传播神经网络的组合模型(IPSO-BP)来预测物流公司日常快递业务量;进而动态申请合适数量云资源以处理变化的业务需求。大量仿真实验证明,在神经网络参数选择合理的情况下,IPSO-BP模型比其他传统方法有更好的预测效果。 展开更多
关键词 物流运输 工作流 粒子优化算法 反向传播神经网络 快递业务量预测
在线阅读 下载PDF
IPSO-BP算法在半主动悬架控制中的应用 被引量:3
11
作者 刘顺安 胡庆玉 +3 位作者 高春甫 于显利 姚永明 陈延礼 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第9期1281-1286,共6页
为了改善半主动悬架的性能,提出采用改进的粒子群优化(improved particle swarm optimization,IPSO)-向后传播(back propagation,BP)算法作为半主动悬架自适应控制,该算法将标准粒子群算法进行改进,用以改善粒子群全局收敛性和收敛速度... 为了改善半主动悬架的性能,提出采用改进的粒子群优化(improved particle swarm optimization,IPSO)-向后传播(back propagation,BP)算法作为半主动悬架自适应控制,该算法将标准粒子群算法进行改进,用以改善粒子群全局收敛性和收敛速度,并将改进后的IPSO算法作为BP神经网络的学习算法,用于半主动悬架的自适应控制.自适应控制器采用了双神经网络单元结构,一个作为输入端的控制器,根据路面输入调节半主动悬架阻尼值,另一个作为半主动悬架的辨识器,并进行在线识别.通过该控制器进行半主动悬架自适应控制数值仿真,结果表明,基于该算法的控制器明显改善了汽车的舒适性和平顺性,使得车身的垂向加速度比粒子群优化(particle swarm optimization,PSO)-BP半主动悬架的降低了21.73%,提高了汽车悬架的性能. 展开更多
关键词 半主动悬架 自适应控制 粒子优化(IPSO)-向后传播(BP)算法 粒子优化(IPSO)机制
在线阅读 下载PDF
改进的QPSO-BP算法的铀价格预测模型及应用 被引量:2
12
作者 陈建宏 周汉陵 +1 位作者 于凤玲 杨珊 《计算机工程与应用》 CSCD 2013年第21期235-239,244,共6页
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP... 铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5-11-1对铀价格进行预测。结果表明:QPSO-BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为0.002 5,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 展开更多
关键词 价格预测 量子粒子算法 量子粒子算法(QPSO)-反向传播(BP)模型 铀价
在线阅读 下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
13
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子优化算法 本征模函数
在线阅读 下载PDF
递阶遗传粒子群算法在神经网络设计中的应用 被引量:1
14
作者 吕俊 高慧萍 杨慧 《计算机工程与应用》 CSCD 北大核心 2010年第33期227-229,243,共4页
将递阶遗传粒子群算法(HGAPSO)应用于神经网络设计,可以在对网络拓扑结构优化的同时对连接权重进行求解。该算法结合了遗传算法在解决离散问题和粒子群算法在解决连续问题上的优势,并利用BP算法沿误差最速下降的能力对连接权重进一步学... 将递阶遗传粒子群算法(HGAPSO)应用于神经网络设计,可以在对网络拓扑结构优化的同时对连接权重进行求解。该算法结合了遗传算法在解决离散问题和粒子群算法在解决连续问题上的优势,并利用BP算法沿误差最速下降的能力对连接权重进一步学习,达到全局最优和快速搜索的有机结合。通过对混沌时序信号的预测,表明递阶遗传粒子群算法在较大程度上提高了神经网络的学习性能和泛化能力。 展开更多
关键词 递阶遗传算法 粒子算法 误差反向传播(BP)算法 人工神经网络 优化 混沌时间序列
在线阅读 下载PDF
基于IPSO-BP神经网络的WSNs数据融合算法 被引量:5
15
作者 马占飞 巩传胜 +2 位作者 李克见 林继祥 刘雨忻 《传感器与微系统》 CSCD 北大核心 2023年第12期151-154,159,共5页
针对无线传感器网络(WSNs)数据融合算法中反向传播(BP)神经网络存在对初值敏感、收敛速度慢、易陷入局部最优解等问题,提出基于改进粒子群优化BP(IPSO-BP)神经网络的WSNs数据融合算法。首先,用细菌觅食算法的趋化、迁徙算子对粒子群优化... 针对无线传感器网络(WSNs)数据融合算法中反向传播(BP)神经网络存在对初值敏感、收敛速度慢、易陷入局部最优解等问题,提出基于改进粒子群优化BP(IPSO-BP)神经网络的WSNs数据融合算法。首先,用细菌觅食算法的趋化、迁徙算子对粒子群优化(PSO)算法进行改进;然后,用IPSO算法优化BP神经网络的权值和阈值,再引入到WSNs数据融合中,簇成员节点负责采集监测数据,在簇首节点通过优化后的BP神经网络对数据进行特征提取,并将融合结果发送至汇聚节点。仿真结果表明:IPSO-BP算法能有效提高融合精度和收敛速度,减少冗余数据传输,延长网络生命周期。 展开更多
关键词 无线传感器网络 数据融合 反向传播神经网络 粒子优化算法 细菌觅食优化算法
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
16
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子优化(APSO)算法 反向传播神经网络(BPNN) 腐蚀速率 预测模型
在线阅读 下载PDF
基于PSO-BP模型的差速器装配密封质量预测 被引量:2
17
作者 徐静 杨德岭 《森林工程》 北大核心 2024年第5期134-144,共11页
为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输... 为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输入变量,差速器总成泄漏值作为输出变量,创建基于粒子群(PSO)算法优化BP神经网络(PSO-BP)的预测模型,结果表明,由灰色关联分析简化后的PSO-BP预测方法得到的平均相对误差最小为1.18%。在此基础上,应用PyQt5 GUI库开发差速器总成泄漏值预测系统。研究结果可以为差速器总成密封质量预测提供理论依据。 展开更多
关键词 运材车辆 差速器 密封质量 灰色关联分析算法 粒子优化算法 反向传播神经网络
在线阅读 下载PDF
基于改进粒子群优化的BP神经网络图像压缩方法 被引量:4
18
作者 李敏 高岳林 《南京理工大学学报》 CAS CSCD 北大核心 2023年第6期756-766,共11页
为了改善反向传播(BP)神经网络算法过度依赖初始参数,导致网络收敛速度慢,容易陷入局部极小值的问题,提出利用改进的粒子群优化(IPSO)算法,对BP神经网络的参数进行优化,找出合适的初始权值和阈值。该文算法在基本粒子群优化(PSO)算法中... 为了改善反向传播(BP)神经网络算法过度依赖初始参数,导致网络收敛速度慢,容易陷入局部极小值的问题,提出利用改进的粒子群优化(IPSO)算法,对BP神经网络的参数进行优化,找出合适的初始权值和阈值。该文算法在基本粒子群优化(PSO)算法中增加了基于四分位数的选择策略,引入遗传算法的自适应变异概率作为扰动概率,加入基于个体自身适应度值与种群平均适应度值比值的自适应扰动策略。该文算法IPSO-BP对训练图像Lena、测试图像Cameraman和验证图像Peppers效果都有明显的提高,经过IPSO-BP训练的模型峰值信噪比(PSNR)和均方误差(MSE)明显好于惯性权重线性递减的粒子群优化-反向传播(LDWPSO-BP)、基于动态加速因子的粒子群优化-反向传播(PSO-DAC-BP)、基于正态分布衰减惯性权重的粒子群优化-反向传播(NDPSO-BP)、自适应变异粒子群优化-反向传播(ADVPSO-BP)、遗传算法-反向传播(GA-BP)以及天牛须搜索-反向传播(BAS-BP),PSNR在7种算法中最大,MSE在7种算法中最小。虽然IPSO-BP在图像Lena上的压缩率(CR)小于PSO-DAC-BP和BAS-BP,在Cameraman上的CR小于NDPSO-BP、ADVPSO-BP和GA-BP,但相差不超过0.01和0.006。 展开更多
关键词 粒子优化 反向传播神经网络 图像压缩 遗传算法 峰值信噪比 均方误差 压缩率
在线阅读 下载PDF
基于高维空间几何的PSO-BP神经网络图像复原 被引量:4
19
作者 郭佩 何小海 +1 位作者 陶青川 李木维 《计算机工程与应用》 CSCD 2012年第2期156-159,共4页
针对退化图像复原问题,提出了一种基于高维空间几何理论(HDSG)的PSO-BP神经网络图像复原方法。高维空间几何理论中的同胚映射和同源连续性原理,把图像映射为高维空间中的一个点,通过回归原模糊图像和由此图像衍生出的几幅更加模糊的图... 针对退化图像复原问题,提出了一种基于高维空间几何理论(HDSG)的PSO-BP神经网络图像复原方法。高维空间几何理论中的同胚映射和同源连续性原理,把图像映射为高维空间中的一个点,通过回归原模糊图像和由此图像衍生出的几幅更加模糊的图像对应在空间中几个点的分布曲线,得到清晰的复原图像。在该理论基础上,用PSO-BP神经网络来确定高维空间中各点的关系,通过对训练样本的学习训练,在三幅退化图像与原始清晰图像之间建立映射关系,然后用训练好的网络对测试样本进行复原。对比实验表明,该方法在主观视觉和定量分析上都获得了较好的效果。 展开更多
关键词 图像复原 神经网络 粒子优化算法-反向传播(pso-bp) 高维空间几何
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
20
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部