期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于小波包分解和神经网络集成群的滚动轴承故障诊断
1
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子优化反向传播神经网络 神经网络集成
在线阅读 下载PDF
基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测 被引量:29
2
作者 殷礼胜 唐圣期 +1 位作者 李胜 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2273-2279,共7页
针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIM... 针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIMA模型预测值和灰色关联系数大于0.6的相关性强的前3个时刻的历史数据作为小波神经网络(WNN)的输入,在兼顾历史数据的平稳和非平稳的情况下,进行了模型结构简化。在算法方面,通过遗传粒子群算法对小波神经网络的参数初始值进行最优选取,可使其结果在不易陷入局部最优的条件下加快网络训练收敛速度。实验结果表明,在预测精度方面,该方法的模型明显优于整合移动平均自回归模型和遗传粒子群算法优化小波神经网络,在收敛速度方面,用遗传粒子群算法优化模型明显优于仅用遗传算法优化模型。 展开更多
关键词 短时交通流预测 灰色关联分析法 整合移动平均自回归 遗传粒子优化小波神经网络
在线阅读 下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
3
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子算法 改进粒子优化-反向传播神经网络(IPSO-BPNN) 预测模型
在线阅读 下载PDF
自适应变系数粒子群和径向基神经网络在短期电价预测中的应用(英文) 被引量:3
4
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 李娜 孟欣 《电网技术》 EI CSCD 北大核心 2010年第1期98-106,共9页
分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法... 分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法与RBF神经网络结合形成自适应变系数粒子群-径向基(AVCPSO-RBF)神经网络混合优化算法。基于此优化算法,建立了短期电价预测模型,并利用贵州电网历史数据进行短期电价预测。仿真计算结果表明,AVCPSO-RBF混合优化算法在短期电价预测中优于传统RBF神经网络法和PSO-RBF神经网络方法,克服了上述2种方法的缺点,改善了RBF神经网络的泛化能力,具有输出稳定性好、预测精度高、收敛速度快等特点,使用该方法得到的各日预测电价的平均百分比误差可控制在2%以内,平均绝对误差最大值为1.652RMB/MW·h。 展开更多
关键词 电价预测 粒子优化算法:径向基神经网络 混合优化算法 泛化能力
在线阅读 下载PDF
基于混沌粒子群神经网络的瓦斯浓度预测 被引量:8
5
作者 耿越 《中国煤炭》 北大核心 2017年第3期124-129,共6页
通过定量法确定瓦斯浓度数据具有混沌特性,计算瓦斯序列的延迟时间和最优嵌入维数并对其相空间重构。在混沌分析的基础上结合人工神经网络技术,针对传统RBFNN模型参数确定的问题,提出通过粒子群算法对网络参数优化,建立了CT—PSO—RBFN... 通过定量法确定瓦斯浓度数据具有混沌特性,计算瓦斯序列的延迟时间和最优嵌入维数并对其相空间重构。在混沌分析的基础上结合人工神经网络技术,针对传统RBFNN模型参数确定的问题,提出通过粒子群算法对网络参数优化,建立了CT—PSO—RBFNN预测模型。利用实际煤矿监测数据对提出的模型训练预测,并与其他3种模型横向对比,得出性能排序为CT—PSO—RBFNN>T—PSO—RBFNN>CT—RBFNN>T—RBFNN。结果证明,CT—PSO—RBFNN模型预测精度高、预测误差小、性能稳定,能够为瓦斯灾害的预报预警提供一定技术支持。 展开更多
关键词 瓦斯浓度预测 煤矿安全 混沌分析 粒子优化径向基函数神经网络 预报预警
在线阅读 下载PDF
基于粒子群优化算法的PSO-BP海底声学底质分类方法 被引量:15
6
作者 陈佳兵 吴自银 +3 位作者 赵荻能 周洁琼 李守军 尚继宏 《海洋学报》 CAS CSCD 北大核心 2017年第9期51-57,共7页
利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特... 利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特征向量,利用PSO-BP方法对海底底质进行分类识别。实验表明,3类底质分类精度均大于90%,高于BP神经网络70%左右的分类精度,表明PSO-BP方法可有效应用于海底底质的分类识别。 展开更多
关键词 基于粒子优化算法的BP神经网络 特征向量 粒子算法 底质分类
在线阅读 下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究 被引量:4
7
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子优化算法的反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
在线阅读 下载PDF
基于PSO-BP的自平衡法试桩技术平衡点位置研究
8
作者 欧孝夺 梁枫 江杰 《广西大学学报(自然科学版)》 北大核心 2025年第2期231-241,共11页
针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结... 针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结合工程实例来验证本模型的适用性。结果表明,结合粒子群算法优化的PSO-BP神经网络模型,其平衡点位置预测值与真实值的平均相对误差控制在1.93%以内,而BP神经网络的平衡点位置预测值平均相对误差最高可达14.83%;依托来宾市当地以灰岩为持力层的工程试桩数据构建的PSO-BP神经网络平衡点位置预测模型,其仿真预测结果的均方根误差(R_(MSE))为0.294,决定系数R^(2)为0.988,预测值与真实值的相对误差在3.0%以内;在工程实例的对比验证中,PSO-BP神经网络模型在平衡点位置预测上的精度高于规范经验公式法,更接近实际位置,可作为灰岩地区基桩自平衡试桩测试的平衡点位置确定的有效手段。 展开更多
关键词 自平衡法 平衡点 粒子优化-反向传播神经网络 粒子算法 灰岩
在线阅读 下载PDF
基于MFO-BPNN的螺旋钻机钻速预测研究
9
作者 李嘉辉 王英 +3 位作者 郑荣跃 叶军 赵京昊 陈立 《机电工程》 CAS 北大核心 2024年第4期633-642,共10页
针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了... 针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了江苏无锡某施工现场钻探数据,并分析了钻速影响因素,运用小波阈值降噪、归一化和灰色关联度分析等系列方法对采集数据进行了预处理,得到了训练和测试集;然后,将MFO算法运用于神经网络的权值和阈值训练,以代替原有梯度下降法,建立了MFO-BPNN钻速预测模型;最后,对上述预测模型与BPNN模型、遗传算法优化反向传播神经网络(GA-BPNN)模型以及粒子群优化算法优化反向传播神经网络(PSO-BPNN)模型的预测结果和评价指标进行了详细的对比分析。研究结果表明:运用MFO-BPNN建立的钻速预测模型,其可靠性达到了91.65%,其决定系数(R 2)优于其他3种预测模型,3项误差指标也是其中最低的,说明该模型的预测精度良好,适合于桩基础工程的实际应用,可为复杂因素影响下的钻速预测提供一种新思路。 展开更多
关键词 螺旋钻机 钻速预测 飞蛾扑火算法 反向传播神经网络 遗传算法优化反向传播神经网络 粒子优化算法优化反向传播神经网络 决定系数 桩基础工程
在线阅读 下载PDF
交通信号公交优先控制策略及智能控制方法 被引量:9
10
作者 邝先验 许伦辉 黄艳国 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第10期1284-1290,共7页
针对公交优先交通信号控制问题,研究了公交优先的信号控制策略,提出了一种变论域模糊神经网络公交优先智能控制方法.提出了基于相位优先度值的公交优先相位选择方法,并给出了其数学描述.建立了绿灯时间的3层模糊控制模型,分别为红灯排... 针对公交优先交通信号控制问题,研究了公交优先的信号控制策略,提出了一种变论域模糊神经网络公交优先智能控制方法.提出了基于相位优先度值的公交优先相位选择方法,并给出了其数学描述.建立了绿灯时间的3层模糊控制模型,分别为红灯排队疏散时间、绿灯延长时间和论域调节因子模糊控制器,其中红灯排队疏散时间和绿灯延长时间两个模糊控制器的输出变量均采用变论域,论域的变化考虑混合交通、天气情况、车流转向等因素由论域调节因子模糊控制器确定.模糊控制器采用粒子群优化神经网络实现.仿真结果表明该方法具有较好的公交优先控制效果. 展开更多
关键词 交通控制 公交优先 模糊控制 变论域 粒子群优化神经网络
在线阅读 下载PDF
基于RBF算法的探空湿度太阳辐射误差预测 被引量:1
11
作者 冒晓莉 张鹏 +1 位作者 张加宏 赵雪伟 《现代电子技术》 北大核心 2020年第19期146-151,共6页
针对传统BP神经网络算法预测的探空湿度太阳辐射温度误差偏大的问题,基于南京大桥的GTS1-2湿度传感器及其防雨帽模型,采用计算流体动力学(CFD)软件,通过PRO/E建模、ICEM划分网格及FLUENT仿真,以高空实际探测中典型气压、太阳高度角和太... 针对传统BP神经网络算法预测的探空湿度太阳辐射温度误差偏大的问题,基于南京大桥的GTS1-2湿度传感器及其防雨帽模型,采用计算流体动力学(CFD)软件,通过PRO/E建模、ICEM划分网格及FLUENT仿真,以高空实际探测中典型气压、太阳高度角和太阳辐射量为变量仿真出2530组温度误差的数据样本。数据样本通过BP,PSO-BP,GA-BP,RBF神经网络算法进行优化对比,最终采用RBF神经网络算法构建预测模型,可预测出不同环境下探空的湿度太阳辐射温度误差,且预测出的温度误差最小。 展开更多
关键词 气象探测 GTS1-2湿度传感器 计算流体动力学 太阳辐射偏干误差 粒子群优化神经网络算法 遗传神经网络算法 径向基函数神经网络算法
在线阅读 下载PDF
Innovative approaches in high-speed railway bridge model simplification for enhanced computational efficiency
12
作者 ZHOU Wang-bao XIONG Li-jun +1 位作者 JIANG Li-zhong ZHONG Bu-fan 《Journal of Central South University》 CSCD 2024年第11期4203-4217,共15页
In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p... In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure. 展开更多
关键词 high-speed railway bridge engineering track-bridge system model simplified bridge model artificial neural networks particle swarm optimization seismic analysis
在线阅读 下载PDF
基于山东省不同模型的物流需求预测比较研究 被引量:20
13
作者 徐晓燕 杨慧敏 +2 位作者 吕修凯 王雪 康静彩 《包装工程》 CAS 北大核心 2022年第23期207-215,共9页
目的过对不同预测方法的误差对比研究,选取预测生鲜农产品物流需求量更精准方法,为疫情情况下山东省生鲜农产品市场进行科学性、合理化决策提供参考。方法公路货物周转量、互联网普及率、GDP、人口数量、第一产业增加值等十大影响因素... 目的过对不同预测方法的误差对比研究,选取预测生鲜农产品物流需求量更精准方法,为疫情情况下山东省生鲜农产品市场进行科学性、合理化决策提供参考。方法公路货物周转量、互联网普及率、GDP、人口数量、第一产业增加值等十大影响因素作为自变量,以生鲜农产品的需求量作为因变量,分别将小波神经网络、人工神经网络(BP)、遗传算法优化神经网络(GA−BP)、粒子群优化神经网络(PSO−BP)、长短时记忆网络(LSTM)等5种方法的数据预测进行对比分析。结果波神经网络和BP神经网络的预测值明显低于真实值,且平均相对误差接近20%,而优化后的GA−BP、PSO−BP、LSTM算法误差均小于5%,分别为4.06%、1.162%、0.45%,因此,LSTM预测精度最高,效果最好。结论来山东省的生鲜农产品需求量将持续增长,LSTM算法以其精确度更高,学习能力更强的优点,将会被更多地应用到物流领域研究中。 展开更多
关键词 小波神经网络 人工神经网络 遗传算法优化神经网络 粒子群优化神经网络 长短时记忆网络 需求预测
在线阅读 下载PDF
基于QPSO-BP和改进D-S的水电机组振动故障诊断 被引量:6
14
作者 程加堂 段志梅 +1 位作者 艾莉 熊燕 《电力系统保护与控制》 EI CSCD 北大核心 2015年第19期66-71,共6页
为提高水电机组振动故障诊断的准确性,提出了一种基于改进D-S证据理论融合量子粒子群优化BP神经网络(QPSO-BP)的诊断方法。根据水电机组常见的振动故障类型,采用3个惯性权值随机调整的QPSO-BP网络分别对其进行初级诊断,并作为独立证据... 为提高水电机组振动故障诊断的准确性,提出了一种基于改进D-S证据理论融合量子粒子群优化BP神经网络(QPSO-BP)的诊断方法。根据水电机组常见的振动故障类型,采用3个惯性权值随机调整的QPSO-BP网络分别对其进行初级诊断,并作为独立证据体应用于D-S理论的合成之中,实现了基本概率赋值的客观化。针对标准D-S无法合成高度冲突证据的缺陷,通过计算权值矩阵对其进行修正。实例分析表明,和3个初级诊断模型及标准D-S合成法相比,所提方法可以有效识别机组的振动故障,具有较高的诊断准确率。 展开更多
关键词 水电机组 振动 故障诊断 量子粒子优化BP神经网络 改进D-S证据理论
在线阅读 下载PDF
基于矿热炉外磁场信号的三相电极位置检测系统设计
15
作者 王莉 周潼 +1 位作者 牛群峰 崔健超 《科学技术与工程》 北大核心 2020年第6期2344-2351,共8页
针对矿热炉三相电极位置精确测量、节能降耗和安全生产的需求,设计一种基于矿热炉外磁场信号的三相电极位置检测系统。首先根据矿热炉的实际构造,结合COMSOL Multiphysics软件,建立矿热炉仿真模型,并对矿热炉磁场进行分析,选取外磁场信... 针对矿热炉三相电极位置精确测量、节能降耗和安全生产的需求,设计一种基于矿热炉外磁场信号的三相电极位置检测系统。首先根据矿热炉的实际构造,结合COMSOL Multiphysics软件,建立矿热炉仿真模型,并对矿热炉磁场进行分析,选取外磁场信号采样点。在选取的采样点,采集具有不同电极位置的矿热炉模型的外磁场信号,建立矿热炉外磁场信号样本集。根据该样本集,应用偏最小二乘(partial least squares,PLS)回归分析、径向基函数神经网络(radial basis function neural network,RBFNN)和粒子群优化RBFNN(particle swarm optimized RBFNN,PSO-RBFNN)分别建立矿热炉三相电极位置检测模型,并结合MATLAB GUI建立基于矿热炉外磁场信号的三相电极位置检测系统。实验结果表明,检测系统的三种模型都可以实现对电极位置的检测,其中PSO-RBFNN模型的效果最优,三相电极位置检测准确率达到94.98%(训练集),90.21%(测试集),均方根误差为0.0535(训练集)、0.1311(测试集)。提出的检测系统能够较精确地测量三相电极在矿热炉内的位置,实现非接触式检测,具有较好的实用价值和应用前景。 展开更多
关键词 矿热炉 外磁场信号 电极位置 COMSOL Multiphysics软件 偏最小二乘回归分析 径向基函数神经网络 粒子优化径向基函数神经网络
在线阅读 下载PDF
需求侧响应下基于负荷特性的改进短期负荷预测方法 被引量:26
16
作者 刘云 张杭 张爱民 《电力系统保护与控制》 EI CSCD 北大核心 2018年第13期126-133,共8页
为了提高需求侧电力负荷预测精度,针对需求侧自身特点,提出了基于负荷特性的改进短期负荷预测方法。依据需求侧负荷特性与属性聚类算法结合的方法完成两级需求侧负荷分类,并使用优化改进粒子群优化径向基神经网络(MPSO-RBF)和最小二乘... 为了提高需求侧电力负荷预测精度,针对需求侧自身特点,提出了基于负荷特性的改进短期负荷预测方法。依据需求侧负荷特性与属性聚类算法结合的方法完成两级需求侧负荷分类,并使用优化改进粒子群优化径向基神经网络(MPSO-RBF)和最小二乘支持向量机回归模型(LS-SVM)等算法建立短期预测模型进行负荷预测。利用该方法对某工业园区用电负荷进行预测,并与实际用电负荷数据和利用传统预测模型以及单一模型预测方法进行了比较分析。预测结果平均相对误差表明,基于负荷特性的改进短期负荷预测方法是有效和实用的,既能得到准确的负荷预测结果,方便需求侧用户就地进行各类负荷针对性调控,又方便管理者宏观掌控需求侧用户负荷情况,有效推动能源互联网的发展。 展开更多
关键词 需求侧响应 属性聚类 改进粒子优化径向基神经网络 最小二乘支持向量机 短期负荷预测
在线阅读 下载PDF
基于关联监测点数据的非线性变形预测模型 被引量:8
17
作者 李柏佚 王桂林 袁军 《振动与冲击》 EI CSCD 北大核心 2021年第8期124-130,共7页
基坑边坡变形具有非平稳性、非线性等特点,且现有的变形预测模型常用单个监测点或整体监测点的数据进行预测,忽略了不同监测点之间的关联性。以重庆某深基坑边坡为例,分别研究基于单个监测点数据和基于关联监测点数据的经验模态分解-粒... 基坑边坡变形具有非平稳性、非线性等特点,且现有的变形预测模型常用单个监测点或整体监测点的数据进行预测,忽略了不同监测点之间的关联性。以重庆某深基坑边坡为例,分别研究基于单个监测点数据和基于关联监测点数据的经验模态分解-粒子群优化算法-BP神经网络(EMD-PSO-BPNN)模型、PSO-BPNN模型、BP神经网络模型的预测结果,并对比了基于整体监测点中非关联多点数据的预测结果。结果表明:EMD模型降低了基坑边坡变形数据非平稳性,使得各分量变化曲线比原监测数据的曲线更光滑和平稳,提高了预测精度;EMD-PSO-BPNN模型具有较好的非线性映射能力、学习能力和自适应能力,预测精度优于其他模型;同种模型下,基于关联点的预测模型预测精度明显高于单个监测点的预测模型。 展开更多
关键词 经验模态分解-粒子优化算法-BP神经网络(EMD-PSO-BPNN) 关联监测点 深基坑 变形预测
在线阅读 下载PDF
基于连续小波变换耦合CARS算法的冬小麦冠层叶片含水量估算 被引量:8
18
作者 李铠 常庆瑞 +4 位作者 陈倩 陈晓凯 莫海洋 张耀丹 郑智康 《麦类作物学报》 CAS CSCD 北大核心 2023年第2期251-258,共8页
为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析... 为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析;并通过竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)过滤冗余变量,筛选与叶片含水量相关性较好的波长变量,作为优选变量集;通过粒子群算法(particle swarm optimization,PSO)对BP神经网络模型进行优化,构建冠层叶片含水量预测模型并进行分析。结果表明,从尺度1到尺度10,小波系数与冬小麦叶片含水量整体相关性先升后降,中等分解尺度在光谱波段去除噪声、提高相关性方面最佳;基于CARS优选变量集所建的两种模型中,BP-PSO模型预测能力明显优于普通BP神经网络模型,其决定系数可达0.82,均方根误差为0.86%,相对误差为0.82%。这说明CWT-CARS-BP-PSO耦合算法在提升相关性、过滤冗余波段、提高模型预测精度方面效果显著,可用于冬小麦叶片含水量预测。 展开更多
关键词 冬小麦 叶片含水量 高光谱 连续小波变换 竞争适应重加权采样 粒子算法PSO优化BP神经网络
在线阅读 下载PDF
蛋鸡设施养殖环境质量评价预测模型构建方法及性能测试 被引量:5
19
作者 李华龙 李淼 +4 位作者 詹凯 刘先旺 杨选将 胡泽林 郭盼盼 《智慧农业(中英文)》 2020年第3期37-47,共11页
蛋鸡设施养殖环境质量对蛋鸡的健康生长和生产性能的提升至关重要。蛋鸡养殖环境是多环境因子相互影响制约的复杂非线性系统,凭借单一的养殖环境参数难以对环境质量做出准确有效的评价。针对上述问题,本研究综合蛋鸡设施养殖环境的温度... 蛋鸡设施养殖环境质量对蛋鸡的健康生长和生产性能的提升至关重要。蛋鸡养殖环境是多环境因子相互影响制约的复杂非线性系统,凭借单一的养殖环境参数难以对环境质量做出准确有效的评价。针对上述问题,本研究综合蛋鸡设施养殖环境的温度、湿度、光照强度、氨气浓度等多个环境影响因子,在布谷鸟搜索算法优化神经网络(CS-BP)预测模型的基础上,构建了改进的CS-BP的蛋鸡设施养殖环境质量评价预测模型。将构建的改进CS-BP预测模型与BP神经网络、遗传算法优化BP神经网络(GA-BP)、粒子群算法优化BP神经网络(PSO-BP)3种深度学习方法进行性能参数分析比对,结果表明:改进CS-BP评价预测模型的平均绝对误差(MAE)、平均相对误差(MAPE)和决定系数(R2)分别为0.0865、0.0159和0.8569,其各项指标性能均优于上述3种对比模型,该模型具有较强的模型泛化能力和较高的预测精度。对改进CS-BP的蛋鸡设施养殖环境质量评价模型进行测试,其分类准确率达0.9333以上。本研究构建的模型可以为蛋鸡设施养殖环境质量提供更加全面有效的科学评价,对实现蛋鸡生产环境的最优控制,促进蛋鸡生产性能的提升具有重要意义。 展开更多
关键词 蛋鸡设施养殖 环境质量评价 布谷鸟搜索算法优化神经网络(CS-BP) 遗传算法优化BP神经网络(GA-BP) 粒子算法优化BP神经网络(PSO-BP) 深度学习 多环境因子
在线阅读 下载PDF
网联车混行条件下交通流量融合方法
20
作者 李潇 汪涛 +1 位作者 张毅 李朝阳 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期49-55,共7页
未来智能网联车与非网联车混行将带来更多的多源交通数据;为了提高数据的可靠性,结合传统交通数据获取方式提出了一种基于粒子群优化径向基神经网络的多源交通数据融合方法。首先选取不同来源的数据构建多源数据集并设置对照数据,利用El... 未来智能网联车与非网联车混行将带来更多的多源交通数据;为了提高数据的可靠性,结合传统交通数据获取方式提出了一种基于粒子群优化径向基神经网络的多源交通数据融合方法。首先选取不同来源的数据构建多源数据集并设置对照数据,利用Elbow Method方法和K-Means算法对多源数据集进行聚类,再以聚类中心坐标为参考构建相应径向基神经网络,最后在神经网络训练过程中引入粒子群算法,以融合结果与对照数据的差值作为粒子群算法迭代的目标函数,帮助求解神经网络中的参数。使用MATLAB实现神经网络并选取一组多源交通流量进行测试,同时再把这组交通流量数据用卡尔曼滤波算法融合,将两种方法的融合结果进行对比。结果表明:相比于传统卡尔曼滤波,使用粒子群优化的径向基神经网络对混行条件下的多源交通流量进行融合时数据误差均降低60%以上。 展开更多
关键词 智能网联车 混行 多源数据融合 粒子优化径向基神经网络 卡尔曼滤波
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部