期刊文献+
共找到1,069篇文章
< 1 2 54 >
每页显示 20 50 100
基于粒子群优化BP神经网络的核事故源项反演
1
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于粒子群优化BP神经网络的步态相位识别
2
作者 代金隧 何志琴 +3 位作者 马家庆 吴钦木 刘洪举 李永杰 《传感器与微系统》 北大核心 2025年第10期78-81,共4页
为了解决传统的反向传播(BP)神经网络在步态相位识别中易陷入局部最优解的问题,并增强BP神经网络在步态相位识别的准确性和高效性,提出了一种基于粒子群优化(PSO)的BP神经网络识别算法。该算法以经过滤波、特征提取以及基于步态相位划... 为了解决传统的反向传播(BP)神经网络在步态相位识别中易陷入局部最优解的问题,并增强BP神经网络在步态相位识别的准确性和高效性,提出了一种基于粒子群优化(PSO)的BP神经网络识别算法。该算法以经过滤波、特征提取以及基于步态相位划分准则分割后的数据作为输入,通过不断迭代更新粒子的速度和位置,来优化BP神经网络的权重和阈值。基于优化后的BP神经网络对输入数据进行训练,导出训练好的模型参数,并将其嵌入到外骨骼样机中进行实时步态相位识别测试。结果显示,该模型具有良好的实时性和高准确率,能够准确地识别步态相位。 展开更多
关键词 粒子优化算法 反向传播神经网络 步态相位 外骨骼样机
在线阅读 下载PDF
基于粒子群优化的BP神经网络PID的加速度计组件温控算法 被引量:1
3
作者 魏国 朱旭 +3 位作者 高春峰 侯承志 程嘉奕 陈迈伦 《中国惯性技术学报》 北大核心 2025年第4期359-366,共8页
在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提... 在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提出了基于PSO-BPNN-PID控制器,利用粒子群优化算法和反向传播算法对神经网络PID控制器进行离线和在线的连接权值整定,实现石英挠性加速度计组件一体化温度控制算法,满足加速度计组件的自适应智能控制需求。仿真和实验结果表明,所提算法能够显著提升系统的温度稳定性,可实现±0.002℃的温度稳定控制。同时,验证了系统具备快速响应温度变化的能力,能够在短时间内将温度调整至设定值附近,并有效抑制超调现象。此外,实验还模拟了外部扰动情况,验证了系统在面对扰动时能够迅速恢复稳定状态,表现出优越的抗扰动能力,可以满足多种温度环境下的加速度计组件高精度温控应用需求。 展开更多
关键词 石英挠性加速度计 温度控制 粒子优化算法 BP神经网络
在线阅读 下载PDF
基于改进粒子群优化与混合卷积神经网络的受端电网直流闭锁频率紧急控制决策优化
4
作者 曹镇 庄俊 +3 位作者 薛金花 齐航 李华瑞 李常刚 《现代电力》 北大核心 2025年第4期711-721,共11页
针对直流闭锁事故后受端电网频率安全问题,提出一种基于改进粒子群优化和混合卷积神经网络的频率紧急控制决策优化方法。首先,协调考虑紧急切负荷和抽蓄切泵控制措施,对受端电网频率紧急控制优化问题进行数学建模。然后,使用粒子群优化... 针对直流闭锁事故后受端电网频率安全问题,提出一种基于改进粒子群优化和混合卷积神经网络的频率紧急控制决策优化方法。首先,协调考虑紧急切负荷和抽蓄切泵控制措施,对受端电网频率紧急控制优化问题进行数学建模。然后,使用粒子群优化算法求解最优控制策略,并基于对立学习机制和混沌Tent映射改进粒子群优化算法,在保证紧急控制策略动态安全可行性前提下提高全局收敛性。最后,在粒子群优化过程中基于混合CNN构建多任务动态安全评估模型,快速判断紧急控制策略是否满足系统动态安全约束,提高频率紧急控制决策优化效率,并以某多直流馈入受端系统为例,验证所提方法有效性。 展开更多
关键词 直流闭锁 受端电网 频率紧急控制 粒子优化 混合卷积神经网络 多任务动态安全评估
在线阅读 下载PDF
基于神经网络和粒子群算法的船舶板架动力学优化
5
作者 周俞 栾晨 夏利娟 《舰船科学技术》 北大核心 2025年第15期30-35,共6页
本文提出一种基于神经网络和粒子群算法(Particle Swarm Optimization,PSO)的船舶板架动力学优化方法,用于板架布局的快速寻优。首先,分析船舶板架布局的特征参数,利用拉丁超立方采样和模态分析获得样本点的固有频率;然后,构建BP神经网... 本文提出一种基于神经网络和粒子群算法(Particle Swarm Optimization,PSO)的船舶板架动力学优化方法,用于板架布局的快速寻优。首先,分析船舶板架布局的特征参数,利用拉丁超立方采样和模态分析获得样本点的固有频率;然后,构建BP神经网络代理模型,用以反映板架特征参数和固有频率之间的非线性映射关系;最后,结合粒子群算法,以结构重量和一阶固有频率为目标,将代理模型应用于船舶板架结构的动力学优化,以确定较优的布局型式。结果表明,BP神经网络代理模型对板架固有频率的预测具有较高的精度,BP-PSO方法对不同尺寸和类型的板架均适用,具有广泛性、高效性、普适性的优势。因此,BP-PSO法能为板架优化设计提供较好的思路和方案。 展开更多
关键词 船舶板架结构 BP神经网络代理模型 粒子算法 结构动力学优化
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
6
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:1
7
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
粒子群优化小波神经网络的功率预测研究
8
作者 柴赟 刘志仁 +2 位作者 曹卫青 杨勤胜 陈公海 《南京师大学报(自然科学版)》 北大核心 2025年第3期129-138,共10页
电力系统的复杂化及可再生能源的集成增加,对电力系统运行中的功率预测技术提出了更高的要求.准确的功率预测对于电力系统的稳定运行、优化发电计划以及减少运营成本非常关键.为应对这一挑战,本文设计了一种将改进后的小波神经网络(WNN... 电力系统的复杂化及可再生能源的集成增加,对电力系统运行中的功率预测技术提出了更高的要求.准确的功率预测对于电力系统的稳定运行、优化发电计划以及减少运营成本非常关键.为应对这一挑战,本文设计了一种将改进后的小波神经网络(WNN)与粒子群优化(PSO)算法相结合的混合模型,有效提升了功率预测的精度与效率.小波神经网络的优势在于其能够处理非线性和非平稳时间序列数据,而粒子群优化则通过其全局搜索能力优化网络参数,从而避免局部最优问题,加速训练过程,改进的Gaussian小波函数增强了模型的多尺度能力.实验结果表明,相比于小波神经网络预测模型,改进后的PSO-WNN模型在预测精度和收敛速度方面均有显著的提升. 展开更多
关键词 粒子优化 小波神经网络 功率预测
在线阅读 下载PDF
结合更新过程与粒子群优化的BP神经网络铁路物资预测模型
9
作者 黄自力 蔡小强 +8 位作者 金荣森 刘承亮 廖志刚 刘立法 孙晶 王芳 刘柏志 王劲 戴梦岚 《铁道科学与工程学报》 北大核心 2025年第7期3011-3024,共14页
非周期性消耗的铁路运营物资(即偶换件),包括导轨、指示器、弹簧片、散热器组件、蓄电池标牌、灯头接头等,是铁路部门生产及经营的重要资源。由于该类物资的易耗性和偶然性,采用高精度的方法预测物资需求能够显著提升铁路部门的日常经... 非周期性消耗的铁路运营物资(即偶换件),包括导轨、指示器、弹簧片、散热器组件、蓄电池标牌、灯头接头等,是铁路部门生产及经营的重要资源。由于该类物资的易耗性和偶然性,采用高精度的方法预测物资需求能够显著提升铁路部门的日常经营效率,也能加强灾害状态下铁路部门的反应能力。本研究聚焦于分析广州铁路集团各地区物资出库数据,由于铁路物资需求具有较大的随机性与偶然性,普通的拟合函数较难刻画其复杂的变动关系。因此,探讨一种基于粒子群优化(particle swarm optimization, PSO)与反向传播神经网络(backpropagation neural network, BPNN)的铁路物资需求预测方法。该方法基于神经网络优化中的频率原则及凝聚现象的理论基础,通过PSO对BPNN进行预训练,赋予其一个较大的初始化权重,使其最终能够学到一个较为复杂的拟合函数,从而刻画物资数据的复杂性与随机性。此外,针对部分具有高频次、高周转物理特性的物资,利用调整后的更新过程(renewal process, RP)对物资数据进行时间序列建模,然后将该时间序列预测值作为一列新的特征,加入先前的神经网络模型中,取得更高的预测精度。与传统机器学习和深度学习方法相比,结合更新过程与粒子群优化的反向传播神经网络(RP-PSO-BPNN)模型表现出色,具有较强的泛化能力,成功克服了传统方法中常见的局部最优问题。PSO算法在优化过程中的高效性得到了验证,相对于传统梯度下降方法,PSO算法显著减少了训练时间。此外,RP-PSO-BPNN模型在不同选定物资的实时序列波动上表现出良好的拟合,证实了其适用性和实用性。本研究通过提出的RP-PSO-BPNN模型为铁路物资,特别是非周期性消耗的铁路物资需求预测领域提供了具有增强预测准确性的方案。未来研究方向包括进一步优化模型结构、探索其他元启发式算法,以及引入更多领域特定因素以提升模型的泛化能力和适应性。 展开更多
关键词 铁路物资数据 物料预测 粒子优化 反向传播神经网络 PSO-BPNN 泛化性 更新过程
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
10
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子优化反向传播神经网络 神经网络集成
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:2
11
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子算法 嵌套优化
在线阅读 下载PDF
基于粒子群优化算法的电弧增材制造焊道尺寸反向传播神经网络预测模型 被引量:2
12
作者 刘浩民 杨洪才 +3 位作者 刘战 李子葳 孙俊华 张元彬(导师) 《机械工程材料》 CAS CSCD 北大核心 2024年第2期97-102,共6页
选取焊接电流、送丝速度、焊接速度及基板温度作为输入变量,焊道熔宽和余高作为输出变量,选择粒子群优化(PSO)算法中的最优粒子惯性权重和学习因子,构建熔化极惰性气体保护电弧增材制造316L不锈钢PSO反向传播(PSO-BP)神经网络模型。结... 选取焊接电流、送丝速度、焊接速度及基板温度作为输入变量,焊道熔宽和余高作为输出变量,选择粒子群优化(PSO)算法中的最优粒子惯性权重和学习因子,构建熔化极惰性气体保护电弧增材制造316L不锈钢PSO反向传播(PSO-BP)神经网络模型。结果表明:PSO-BP神经网络模型预测的焊道熔宽与期望值的均方根误差、最大相对误差与平均相对误差分别为0.386,13.477%,2.580%,焊道余高的分别为0.152,10.372%,2.810%;相较于BP神经网络模型,PSOBP神经网络模型对焊道尺寸的预测精度更高,稳定性更强。 展开更多
关键词 电弧增材制造 焊道尺寸 神经网络 粒子优化
在线阅读 下载PDF
基于粒子群优化BP神经网络的激光扫描投影系统畸变预测方法 被引量:6
13
作者 张宏韬 唐芳 +2 位作者 吴坤 朱亦然 侯茂盛 《光子学报》 EI CAS CSCD 北大核心 2024年第6期275-286,共12页
为了精准、高效地预测和校正激光扫描投影系统的畸变误差,研究了基于粒子群优化BP神经网络的畸变预测方法。建立了BP神经网络结构,并融合粒子群优化算法对BP神经网络的权值和阈值进行优化,得出基于粒子群优化BP神经网络的激光扫描投影... 为了精准、高效地预测和校正激光扫描投影系统的畸变误差,研究了基于粒子群优化BP神经网络的畸变预测方法。建立了BP神经网络结构,并融合粒子群优化算法对BP神经网络的权值和阈值进行优化,得出基于粒子群优化BP神经网络的激光扫描投影系统投影畸变预测模型。选取距激光扫描投影仪器两米的待投影面上的理论坐标点及各点相应畸变值Δx作为粒子群优化BP神经网络的训练数据集,将待投影面上实际投影位置坐标代入训练好的粒子群优化BP神经网络进行预测得到预测畸变值输出,并与实际畸变值对比,最后,引入Elman神经网络预测模型的预测结果与所研究预测方法进行对比。结果表明:在±30°的全视场扫描投影范围内粒子群优化BP神经网络预测模型的均方根误差为0.0176 mm,解算时间仅需22.4 s,相较于Elman神经网络效率提升78.33%,预测精度及时间明显优于Elman神经网络,可以有效预测激光扫描投影系统的畸变误差。 展开更多
关键词 激光扫描投影 粒子优化算法 BP神经网络 误差预测 二维振镜 图形畸变
在线阅读 下载PDF
基于GA-BP神经网络和改进粒子群算法的碰撞射流和冷却顶板复合空调系统优化
14
作者 齐贺闯 叶筱 +2 位作者 高延峰 亢燕铭 钟珂 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第1期110-117,共8页
对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感R_(PD),头足温差Δt,空气交换效率e ACE,工作区平均温度t_(a))与设计变量(送风温度t_... 对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感R_(PD),头足温差Δt,空气交换效率e ACE,工作区平均温度t_(a))与设计变量(送风温度t_(s)、送风速度v_(s)、冷却顶板内表面温度t_(c)、房间负荷Q_(c))之间的预测模型,通过相关性分析确定设计变量对运行性能影响的显著性并排序。结果表明,增大v_(s)可使Δt降低,但R_(PD)增大;增大t_(c)有助于降低Δt和R_(PD),但t_(a)升高;为使t_(a)下降,可通过降低t_(s)来实现,但室内空气质量变差。为确保IJV/RC复合空调能在保证室内热舒适的同时提供良好室内空气品质,利用改进粒子群算法对复合空调的运行性能进行多目标同时优化,建立不同房间负荷条件下的设计参量最优匹配关系。研究结果可为IJV/RC复合空调的优化设计和运行控制提供理论指导。 展开更多
关键词 碰撞射流通风 冷却顶板 GA-BP神经网络 粒子优化算法 多目标优化
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
15
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 BP神经网络 ERA5再分析资料 粒子优化算法 风电功率预测
在线阅读 下载PDF
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
16
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向函数神经网络 自适应粒子优化 量子比特 流量预测
在线阅读 下载PDF
基于径向基神经网络与粒子群算法的双叶片泵多目标优化 被引量:23
17
作者 王春林 胡蓓蓓 +1 位作者 冯一鸣 刘轲轲 《农业工程学报》 EI CAS CSCD 北大核心 2019年第2期25-32,共8页
针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性... 针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解。选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较。经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点。该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高。 展开更多
关键词 算法 优化 数值模拟 径向神经网络
在线阅读 下载PDF
改进粒子群优化Takagi-Sugeno模糊径向基函数神经网络的非线性系统建模 被引量:3
18
作者 李丽娜 甘晓晔 +1 位作者 徐攀峰 马俊 《计算机应用》 CSCD 北大核心 2014年第5期1341-1344,1372,共5页
针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络... 针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络用于系统建模,并采用动态调整惯性权重的改进的PSO算法结合递推最小二乘算法实现网络参数的优化调整。首先,利用所提算法进行了非线性多维函数的逼近仿真,仿真结果均方差(MSE)为0.00017,绝对值误差不大于0.04,逼近精度较高;又将该算法用于建立动态流量软测量模型,并进行了相关的实验研究,动态流量测量结果平均绝对误差小于0.15 L/min,相对误差为1.97%,基本满足测量要求,并优于已有算法。上述仿真及实验研究结果表明,所提算法对于复杂非线性系统具有较高的建模精度和良好的自适应性。 展开更多
关键词 动态流量 软测量 T-S模糊模型 径向函数神经网络 粒子优化算法
在线阅读 下载PDF
基于自适应粒子群优化径向基函数神经网络的语音转换 被引量:8
19
作者 张玲华 姚绍芹 解伟超 《数据采集与处理》 CSCD 北大核心 2015年第2期336-343,共8页
语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到... 语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到说话人谱包络参数与基频有着密切的联系,利用基于径向基函数神经网络的联合谱包络基频变换方法,将谱包络参数与基频联合进行建模和转换,使得转换后的基频含有更多的说话人个性特征。最后,运用主、客观方法对获得的转换语音进行性能测试。实验表明,与主流的基于高斯混合模型的语音转换相比,使用自适应粒子群优化的径向基函数神经网络方法能够获得更好的转换性能,且更加适用于男声到女声的转换。 展开更多
关键词 语音转换 径向函数神经网络 自适应粒子优化 高斯混合模型
在线阅读 下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
20
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子优化算法
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部