期刊文献+
共找到229篇文章
< 1 2 12 >
每页显示 20 50 100
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
1
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向函数神经网络 自适应粒子优化 量子比特 流量预测
在线阅读 下载PDF
基于自适应粒子群优化径向基函数神经网络的语音转换 被引量:8
2
作者 张玲华 姚绍芹 解伟超 《数据采集与处理》 CSCD 北大核心 2015年第2期336-343,共8页
语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到... 语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到说话人谱包络参数与基频有着密切的联系,利用基于径向基函数神经网络的联合谱包络基频变换方法,将谱包络参数与基频联合进行建模和转换,使得转换后的基频含有更多的说话人个性特征。最后,运用主、客观方法对获得的转换语音进行性能测试。实验表明,与主流的基于高斯混合模型的语音转换相比,使用自适应粒子群优化的径向基函数神经网络方法能够获得更好的转换性能,且更加适用于男声到女声的转换。 展开更多
关键词 语音转换 径向函数神经网络 自适应粒子优化 高斯混合模型
在线阅读 下载PDF
基于粒子群优化径向基函数神经网络的电力负荷预测 被引量:28
3
作者 关书怀 沈艳霞 《传感器与微系统》 CSCD 北大核心 2021年第5期128-131,共4页
电力负荷精确预测是实现电力系统经济调度重要依据。考虑径向基函数神经网络(RBF-NN)对时间序列所具有的良好拟合及泛化能力,以RBF-NN为研究模型进行电力负荷预测。利用K-means算法对负荷数据进行预处理,引入粒子群优化(PSO)算法对RBF-N... 电力负荷精确预测是实现电力系统经济调度重要依据。考虑径向基函数神经网络(RBF-NN)对时间序列所具有的良好拟合及泛化能力,以RBF-NN为研究模型进行电力负荷预测。利用K-means算法对负荷数据进行预处理,引入粒子群优化(PSO)算法对RBF-NN的参数进行优化,以克服参数不确定、梯度下降、局部最优等问题对其模型预测效果的影响。基于澳大利亚公开的电力负荷数据集,仿真验证了所提电力负荷预测模型更高的精度及泛化能力。 展开更多
关键词 电力负荷预测 径向函数神经网络 粒子优化(PSO)算法 时间序列
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
4
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
改进粒子群优化Takagi-Sugeno模糊径向基函数神经网络的非线性系统建模 被引量:3
5
作者 李丽娜 甘晓晔 +1 位作者 徐攀峰 马俊 《计算机应用》 CSCD 北大核心 2014年第5期1341-1344,1372,共5页
针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络... 针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络用于系统建模,并采用动态调整惯性权重的改进的PSO算法结合递推最小二乘算法实现网络参数的优化调整。首先,利用所提算法进行了非线性多维函数的逼近仿真,仿真结果均方差(MSE)为0.00017,绝对值误差不大于0.04,逼近精度较高;又将该算法用于建立动态流量软测量模型,并进行了相关的实验研究,动态流量测量结果平均绝对误差小于0.15 L/min,相对误差为1.97%,基本满足测量要求,并优于已有算法。上述仿真及实验研究结果表明,所提算法对于复杂非线性系统具有较高的建模精度和良好的自适应性。 展开更多
关键词 动态流量 软测量 T-S模糊模型 径向函数神经网络 粒子优化算法
在线阅读 下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:4
6
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向函数神经网络 粒子优化算法 参数预测
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
7
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
自适应粒子群优化算法优化径向基函数神经网络用于电阻抗成像图像重建 被引量:44
8
作者 吴阳 刘凯 +2 位作者 陈柏 李芳 姚佳烽 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期240-249,共10页
电阻抗成像(EIT)的图像重建是一个高度非线性且欠定的病态逆问题。由于传统方法无法达到很高的精度,并且重建过程通常很耗时,提出了一种基于自适应粒子群优化算法的径向基函数神经网络(APSO-RBFNN)用于图像重建。通过数值模拟建立了15 ... 电阻抗成像(EIT)的图像重建是一个高度非线性且欠定的病态逆问题。由于传统方法无法达到很高的精度,并且重建过程通常很耗时,提出了一种基于自适应粒子群优化算法的径向基函数神经网络(APSO-RBFNN)用于图像重建。通过数值模拟建立了15 000个仿真样本,分为训练集和测试集。经过网络训练后,测试集上的图像相关系数(ICC)为0.95,仿真结果验证了APSO-RBFNN方法的有效性。当将30、40和50 dB的高斯白噪声添加到测试集中,ICC分别为0.90、0.92和0.93,证明了该方法的鲁棒性。对包含更多目标的样本重建结果说明了该方法具有良好的泛化能力。此外,8电极EIT系统的实验数据测试结果表明,相比于Tikhonov和RBFNN方法,APSO-RBFNN方法具有更好的图像重建结果。 展开更多
关键词 电阻抗成像 图像重建 逆问题 自适应粒子优化算法 径向函数神经网络
在线阅读 下载PDF
径向基函数神经网络指导的粒子群优化算法求解多峰优化问题 被引量:8
9
作者 张潇 宋威 《小型微型计算机系统》 CSCD 北大核心 2023年第11期2529-2537,共9页
面对多峰优化问题粒子群优化算法因多样性不足和搜索动作选取不合理,难以找到问题的全局最优解.为此本文提出一种径向基函数神经网络指导的粒子群优化算法.首先设计子群划分方法,将种群划分成多个子群,子群中心作为子群粒子的学习目标,... 面对多峰优化问题粒子群优化算法因多样性不足和搜索动作选取不合理,难以找到问题的全局最优解.为此本文提出一种径向基函数神经网络指导的粒子群优化算法.首先设计子群划分方法,将种群划分成多个子群,子群中心作为子群粒子的学习目标,指导其搜索.该方法充分考虑种群多样性,选择能代表子群搜索特性的粒子作为子群中心,并使之远离存在的中心,通过选择合适的子群中心,实现子群划分.不同子群粒子在各自子群中心指导下搜索,呈现多样的搜索特性.其次,利用子群中心设置隐藏层节点,并在输出层输出粒子加速系数的调整动作.最后引入强化学习来训练网络.在CEC2013的15个多峰函数上开展实验,结果表明本文方法明显提高了多峰优化问题的求解精度. 展开更多
关键词 径向函数神经网络 粒子优化算法 学习目标 加速系数 多峰优化
在线阅读 下载PDF
基于改进粒子群-径向基神经网络模型的短期电力负荷预测 被引量:26
10
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 何常胜 孟欣 《电网技术》 EI CSCD 北大核心 2009年第17期180-184,共5页
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负... 为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素进行短期负荷预测。算例结果表明,该算法优于径向基神经网络法和粒子群–径向基网络算法,克服了径向基网络和粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,输出稳定,预测精度高,收敛速度快,平均百分比误差可控制在1.2%以内。 展开更多
关键词 负荷预测 改进粒子-径向神经网络模型 泛化能力 预测精度
在线阅读 下载PDF
基于粒子群优化的过程神经网络学习算法 被引量:29
11
作者 刘坤 谭营 何新贵 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期238-244,共7页
基于粒子群优化为过程神经元网络提出了一种新的学习算法。新算法在对网络输入函数和连接权函数进行正交基函数展开后,将网络中的结构参数和其他参数整合成一个粒子,再用粒子群优化算法进行全局优化。新算法不依赖于函数梯度信息,不需... 基于粒子群优化为过程神经元网络提出了一种新的学习算法。新算法在对网络输入函数和连接权函数进行正交基函数展开后,将网络中的结构参数和其他参数整合成一个粒子,再用粒子群优化算法进行全局优化。新算法不依赖于函数梯度信息,不需要手动调节网络结构。粒子群优化具有良好的全局优化性能和收敛性能,保证了过程神经元网络的全局学习能力和新学习算法的收敛能力,更好地发挥过程神经网络的逼近性能。两个实际预测问题的实验结果表明,基于粒子群优化的学习算法比现有的基于梯度的基函数展开方法以及误差反传神经网络模型具有更好的预测精度。 展开更多
关键词 过程神经网络 学习算法 粒子优化 函数展开
在线阅读 下载PDF
基于粒子群径向基神经网络的矿井突水水源判别 被引量:15
12
作者 汪嘉杨 李祚泳 +1 位作者 张雪乔 丁恒康 《安全与环境工程》 CAS 北大核心 2013年第5期118-121,共4页
以多项地下水化学组分指标作为判别因子,采用粒子群算法优化径向基函数神经网络中的参数,建立了最优结构的基于粒子群径向基函数神经网络的矿井突水水源判别模型,将此模型应用于实例分析中,并与其他方法进行了比较分析。结果表明:基于... 以多项地下水化学组分指标作为判别因子,采用粒子群算法优化径向基函数神经网络中的参数,建立了最优结构的基于粒子群径向基函数神经网络的矿井突水水源判别模型,将此模型应用于实例分析中,并与其他方法进行了比较分析。结果表明:基于粒子群径向基函数神经网络的矿井突水水源判别模型的判别结果具有客观性和实用性,避免了权重分配等人为因素的干扰;与传统最小二乘法的RBF神经网络相比,其精度更高,优化结果更为合理,具有较强的突水水源判别能力,可为矿井突水水源判别提供了一条新途径。 展开更多
关键词 矿井 突水水源 水质判别 径向函数 神经网络 粒子算法
在线阅读 下载PDF
基于粒子群优化算法的RBF神经网络在泾惠渠灌区地下水位埋深预测中的应用 被引量:7
13
作者 李慧 周维博 +2 位作者 刘博洋 李娜 马聪 《水电能源科学》 北大核心 2014年第8期127-130,共4页
针对不恰当地选取RBF神经网络的网络结构和参数会使网络收敛慢的问题,采用粒子群优化算法对RBF神经网络参数进行优化,建立了基于粒子群优化算法的RBF神经网络模型(PSO-RBF模型),对泾惠渠灌区地下水位埋深进行了模拟和预测。结果表明,... 针对不恰当地选取RBF神经网络的网络结构和参数会使网络收敛慢的问题,采用粒子群优化算法对RBF神经网络参数进行优化,建立了基于粒子群优化算法的RBF神经网络模型(PSO-RBF模型),对泾惠渠灌区地下水位埋深进行了模拟和预测。结果表明,与单一的RBF神经网络相比,PSO-RBF模型具有较高的预测精度。再根据时间序列预测法预测的降水量、径流量、蒸发量、渠灌引水量、地下水开采量、气温等模型的输入变量,用训练好的PSO-RBF模型预测了泾惠渠灌区2009-2020年地下水位埋深,发现该灌区地下水位埋深呈下降趋势。 展开更多
关键词 地下水位埋深 预测 粒子优化算法 径向函数神经网络 时间序列预测法 泾惠渠灌区
在线阅读 下载PDF
基于混合粒子群算法的RBF神经网络参数优化 被引量:15
14
作者 岳恒 张海军 柴天佑 《控制工程》 CSCD 2006年第6期525-529,共5页
针对径向基函数(RBF)神经网络中心参数的优化问题,提出了一种混合粒子群优化算法。该算法应用灰色关联理论定义了粒子群的灰色相似度,分两个阶段对标准的粒子群优化算法(PSO)的全局和局部搜索能力做了改进和提高。在仿真实验中,应用该... 针对径向基函数(RBF)神经网络中心参数的优化问题,提出了一种混合粒子群优化算法。该算法应用灰色关联理论定义了粒子群的灰色相似度,分两个阶段对标准的粒子群优化算法(PSO)的全局和局部搜索能力做了改进和提高。在仿真实验中,应用该方法对典型的Mackey-Glass混沌时间序列进行了预测,并与标准的K均值算法、遗传算法和粒子群算法进行了比较,其结果表明,所预测的各项误差均低于其他常规算法的预测结果。 展开更多
关键词 径向函数(RBF) 粒子优化算法(PSO) 灰色系统 参数优化
在线阅读 下载PDF
自适应变系数粒子群—径向基神经网络模型在负荷预测中的应用 被引量:5
15
作者 师彪 李郁侠 +3 位作者 于新花 李娜 闫旺 孟欣 《计算机应用》 CSCD 北大核心 2009年第9期2454-2458,共5页
为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群—径向基函数神经网络混合优化算法(AVCTPO-RBF)。实现了径向基神经网络参数优化。建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测。仿真表... 为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群—径向基函数神经网络混合优化算法(AVCTPO-RBF)。实现了径向基神经网络参数优化。建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测。仿真表明,该方法的收敛速度和预测精度优于传统径向基神经网络方法和粒子群—RBF神经网络方法及基于混沌理论的神经网络模型,该优化算法克服了径向基神经网络和传统的粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,提高了贵州电网短期负荷预测的精度,各日预测负荷的平均百分比误差可控制在1.7%以内。该算法可有效用于电力系统的短期负荷预测。 展开更多
关键词 短期负荷预测 自适应变系数粒子 泛化能力 径向神经网络
在线阅读 下载PDF
自适应变系数粒子群和径向基神经网络在短期电价预测中的应用(英文) 被引量:3
16
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 李娜 孟欣 《电网技术》 EI CSCD 北大核心 2010年第1期98-106,共9页
分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法... 分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法与RBF神经网络结合形成自适应变系数粒子群-径向基(AVCPSO-RBF)神经网络混合优化算法。基于此优化算法,建立了短期电价预测模型,并利用贵州电网历史数据进行短期电价预测。仿真计算结果表明,AVCPSO-RBF混合优化算法在短期电价预测中优于传统RBF神经网络法和PSO-RBF神经网络方法,克服了上述2种方法的缺点,改善了RBF神经网络的泛化能力,具有输出稳定性好、预测精度高、收敛速度快等特点,使用该方法得到的各日预测电价的平均百分比误差可控制在2%以内,平均绝对误差最大值为1.652RMB/MW·h。 展开更多
关键词 电价预测 粒子优化算法:径向神经网络 混合优化算法 泛化能力
在线阅读 下载PDF
基于粒子群优化神经网络观测器感应电机定子电阻辨识 被引量:8
17
作者 阳同光 桂卫华 《电机与控制学报》 EI CSCD 北大核心 2015年第2期89-95,共7页
针对感应电机模型参数时变性突出的问题,提出一种基于粒子群优化神经网络观测器感应电机定子电阻辨识方法。该方法首先通过构建一个含待辨识参数的非线性函数,然后根据神经网络的一致逼近任意非线性连续函数的性质,利用RBF神经网络逼近... 针对感应电机模型参数时变性突出的问题,提出一种基于粒子群优化神经网络观测器感应电机定子电阻辨识方法。该方法首先通过构建一个含待辨识参数的非线性函数,然后根据神经网络的一致逼近任意非线性连续函数的性质,利用RBF神经网络逼近这个非线性函数,并在此基础上构造自适应观测器。采用伪降阶观测器结构,减少了参数辨识的计算时间;用粒子群优化算法对神经网络参数进行优化,提高了神经网络的收敛速度和逼近精确度。仿真和实验结果验证该方法鲁棒性强,动态性能好,具有较好的辨识效果。 展开更多
关键词 粒子优化 神经网络观测器 感应电机 参数辨识 径向函数
在线阅读 下载PDF
基于人工神经网络-粒子群算法激光烧蚀制备PDPhSM基纳米复合薄膜的工艺优化 被引量:2
18
作者 唐普洪 宋仁国 +1 位作者 柴国钟 毛杰 《材料科学与工艺》 EI CAS CSCD 北大核心 2009年第1期122-125,128,共5页
为有效缩短脉冲激光烧蚀制备有机硅聚合物聚二苯基硅亚甲基硅烷(Polydiphenylsilylenemethyle,PDPhSM)基纳米复合薄膜工艺中繁琐的试验过程,本文将用径向基函数(Radial BasisFunction,RBF)人工神经网络对聚合物PDPhSM基纳米复合薄膜的... 为有效缩短脉冲激光烧蚀制备有机硅聚合物聚二苯基硅亚甲基硅烷(Polydiphenylsilylenemethyle,PDPhSM)基纳米复合薄膜工艺中繁琐的试验过程,本文将用径向基函数(Radial BasisFunction,RBF)人工神经网络对聚合物PDPhSM基纳米复合薄膜的制备工艺与聚合效率之间的关系进行建模;讨论了激光能量密度、环境压强、靶衬距离、沉积时间和聚合效率之间的关系.在此基础上,采用粒子群(Particle Swarm Optimiza-tion,PSO)算法对其进行工艺优化,200代以后,粒子素质明显提高,k值趋近于0,群体达到了最优,工艺参数的优化结果较为满意.从而为薄膜材料工艺优化研究探索了一条崭新的途径. 展开更多
关键词 PDPhSM纳米复合薄膜 激光烧蚀 径向函数神经网络 聚合效率 粒子优化
在线阅读 下载PDF
基于新的改进粒子群算法的BP神经网络在拟合非线性函数中的应用 被引量:25
19
作者 林宇锋 邓洪敏 史兴宇 《计算机科学》 CSCD 北大核心 2017年第B11期51-54,共4页
介绍了一种基于新的改进粒子群算法(NIPSO)的BP神经网络来解决拟合非线性函数所出现的误差较大的问题。此算法在粒子群优化算法基础上,分别让权重和学习因子非线性和线性变化,建立基于新的粒子群优化算法的新模型,再与BP神经网络结合之... 介绍了一种基于新的改进粒子群算法(NIPSO)的BP神经网络来解决拟合非线性函数所出现的误差较大的问题。此算法在粒子群优化算法基础上,分别让权重和学习因子非线性和线性变化,建立基于新的粒子群优化算法的新模型,再与BP神经网络结合之后来拟合非线性函数。结果表明,新的改进粒子群优化算法更加合理且高效地提高了BP神经网络的拟合能力,减小了拟合误差,提高了拟合精度。 展开更多
关键词 BP神经网络 粒子优化算法 函数拟合
在线阅读 下载PDF
基于改进的粒子群径向基神经网络的目标识别 被引量:5
20
作者 袁艳 叶俊浩 苏丽娟 《计算机应用》 CSCD 北大核心 2018年第A01期6-8,23,共4页
为了提高径向基(RBF)神经网络对航拍影像目标的识别率,提出了一种权重改进的粒子群优化(PSO)算法优化径向基神经网络,进行目标识别。首先,运用权重改进的PSO算法求解RBF神经网络隐含层中心,获取优化的径向基神经网络的权值和阈值;合理... 为了提高径向基(RBF)神经网络对航拍影像目标的识别率,提出了一种权重改进的粒子群优化(PSO)算法优化径向基神经网络,进行目标识别。首先,运用权重改进的PSO算法求解RBF神经网络隐含层中心,获取优化的径向基神经网络的权值和阈值;合理地选择待识别目标的样本图像;最后,采用训练过的径向基神经网络对航拍疑似目标图像进行识别。分别采用该算法、经正交最小二乘(OLS)算法和基本PSO算法优化的RBF神经网络对航拍影像进行疑似目标提取和识别,实验结果表明,所提算法对隐含层节点较少的RBF神经网络,识别正确率达到98%,识别效果最好。 展开更多
关键词 粒子优化算法 径向 神经网络 识别
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部