期刊文献+
共找到1,804篇文章
< 1 2 91 >
每页显示 20 50 100
基于红狐优化支持向量机回归的船舶备件预测
1
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于粒子群算法优化支持向量回归的电火花加工工艺指标预测模型 被引量:1
2
作者 寇鹏远 王伟 +3 位作者 刘建勇 罗学科 李殿新 张慧杰 《电加工与模具》 北大核心 2024年第5期21-25,30,共6页
基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型。研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为0.... 基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型。研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为0.302,决定性系数(R^(2))为0.994,较传统SVR模型(RMSE为0.577,R^(2)为0.981)有显著提升,验证了PSO算法优化SVR参数的有效性。对原始数据进行预处理,并基于优化后的数据训练PSO-SVR模型,结果显示:经过数据预处理的PSO-SVR模型在测试集上的RMSE进一步降至0.255,R^(2)提高至0.996,预测精度和泛化能力均得到增强。 展开更多
关键词 支持向量回归 粒子算法 电火花加工 工艺参数 表面粗糙度
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
3
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 民机客舱座椅 支持向量回归 粒子算法 舒适度评价预测
在线阅读 下载PDF
基于贝叶斯优化支持向量回归的煤自燃温度预测模型
4
作者 杨海燕 胡新成 +1 位作者 蔡佳文 余照阳 《工矿自动化》 北大核心 2025年第7期36-43,51,共9页
针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标... 针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标气体数据进行收集与处理。利用Spearman相关性分析选择与煤温相关性较强的指标气体并分析指标气体生成量间的共线性;对选择的指标气体进行主成分分析,解决多重共线性问题的同时降低维数;采用5折交叉验证方法划分训练集和测试集,通过平均绝对误差(MAE)、均方根误差(RMSE)和判定系数(R^(2))指标,对BO-SVR模型的性能与SVR、粒子群优化SVR(PSO-SVR)和遗传算法优化SVR(GA-SVR)模型进行定量评价。结果表明,BO-SVR模型的MAE较其他3种模型分别降低了74.2%,36.7%和10.2%,RMSE分别降低了71.9%,33.3%和11.4%,R^(2)达0.9885,高于其他模型。选取山西煤炭进出口集团河曲旧县露天煤业有限公司的烟煤煤样开展平行试验,BO-SVR模型在新数据集上的MAE为4.9279℃,RMSE为6.4899℃,R^(2)达0.9853,与原数据集预测结果保持高度一致性。表明BO-SVR模型具有较好的泛化性、预测精度和鲁棒性,有助于提高预测煤自燃温度的准确性。 展开更多
关键词 煤自燃 贝叶斯优化 支持向量回归 指标气体 预测模型
在线阅读 下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
5
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
在线阅读 下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
6
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
在线阅读 下载PDF
粒子群优化的支持向量回归机计算配电网理论线损方法 被引量:33
7
作者 徐茹枝 王宇飞 《电力自动化设备》 EI CSCD 北大核心 2012年第5期86-89,93,共5页
针对配电网理论线损精确计算,提出一种基于粒子群优化算法的支持向量回归机(SVR-PSO)的理论线损计算方法。SVR-PSO方法将理论线损计算抽象成多元回归分析,理论线损的若干影响因素作为自变量,理论线损值作为因变量,SVR-PSO通过对已知理... 针对配电网理论线损精确计算,提出一种基于粒子群优化算法的支持向量回归机(SVR-PSO)的理论线损计算方法。SVR-PSO方法将理论线损计算抽象成多元回归分析,理论线损的若干影响因素作为自变量,理论线损值作为因变量,SVR-PSO通过对已知理论线损线路的数据样本训练学习生成配电网理论线损计算模型,进而利用该模型完成未知线路的理论线损计算。在SVR-PSO训练过程中,利用粒子群算法动态地搜索支持向量回归机的最优训练参数,提高了SVR-PSO的计算精度。最后横向对比实验证实了基于SVR-PSO的配电网理论线损计算方法的有效性,与传统方法相比,SVR-PSO方法在计算精度和运算耗时方面拥有更好的性能。 展开更多
关键词 配电网 线路 损耗 计算 粒子优化 多元回归分析 支持向量回归
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:2
8
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小二乘支持向量机(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于粒子群优化的溶解氧质量浓度支持向量回归机 被引量:6
9
作者 安爱民 祁丽春 +2 位作者 丑永新 张浩琛 宋厚彬 《北京工业大学学报》 CAS CSCD 北大核心 2016年第9期1318-1323,共6页
针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取... 针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间的非线性软测量模型,利用该软测量模型对国际基准仿真模型BSM1的溶解氧质量浓度进行预测.仿真结果表明:该模型能得到较好的预测效果,与SVR、RBF神经网络相比,PSO-SVR模型不仅计算复杂度低,而且收敛速度快,预测精度高,泛化能力强. 展开更多
关键词 溶解氧质量浓度 粒子算法 支持向量回归 污水处理 软测量
在线阅读 下载PDF
基于粒子群优化支持向量回归机的黄金价格预测模型 被引量:6
10
作者 王芬 马涛 马旭 《兰州理工大学学报》 CAS 北大核心 2013年第3期65-69,共5页
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的... 为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测. 展开更多
关键词 粒子算法 支持向量回归 黄金价格 参数优化 统计学习理论
在线阅读 下载PDF
基于支持向量回归机和粒子群算法的改进协同优化方法 被引量:2
11
作者 杨希祥 杨慧欣 +1 位作者 江振宇 张为华 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期34-39,共6页
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群... 研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,和基本协同优化方法相比,求解精度高,优化迭代次数少,稳定性好.可为多学科设计优化研究提供理论参考. 展开更多
关键词 协同优化 支持向量回归 粒子算法
在线阅读 下载PDF
基于粒子群优化法的支持向量机回归对膛线加工切削力的预测 被引量:3
12
作者 刘洋 关世玺 沙业典 《工具技术》 北大核心 2022年第2期62-65,共4页
针对神经网络算法和支持向量机算法在膛线加工切削力预测过程存在的问题,基于粒子群优化法对支持向量机回归算法进行了改进。将实验得出的切削参数、切削力等数据输入到该算法模型中,训练得出最佳预测模型,进而用该模型进行切削力预测... 针对神经网络算法和支持向量机算法在膛线加工切削力预测过程存在的问题,基于粒子群优化法对支持向量机回归算法进行了改进。将实验得出的切削参数、切削力等数据输入到该算法模型中,训练得出最佳预测模型,进而用该模型进行切削力预测。经误差检验表明,该改进型算法的预测精度提升85%以上。 展开更多
关键词 粒子优化 支持向量回归 膛线加工 切削参数 切削力预测
在线阅读 下载PDF
基于粒子群优化算法-支持向量回归算法的氨氮传感器温度补偿 被引量:8
13
作者 姜吉光 盛宇博 +3 位作者 常川 石磊 苏成志 李鑫 《科学技术与工程》 北大核心 2021年第21期8983-8988,共6页
针对野外低温环境下,基于铵离子选择性电极的氨氮传感器检测失准问题,通过分析传感器检测原理,在0~30℃进行了水质标样氨氮检测对比实验,探究了温度变化对氨氮传感器输出结果的影响;将粒子群优化算法(particle swarm optimization,PSO)... 针对野外低温环境下,基于铵离子选择性电极的氨氮传感器检测失准问题,通过分析传感器检测原理,在0~30℃进行了水质标样氨氮检测对比实验,探究了温度变化对氨氮传感器输出结果的影响;将粒子群优化算法(particle swarm optimization,PSO)与支持向量回归(support vector regression,SVR)结合,建立了氨氮检测的PSO-SVR温度补偿模型,并与最小二乘多项式回归、传统SVR建立的温度补偿模型对比,PSO-SVR温度补偿模型具有较高的决定系数和较小均方根误差(root mean square error,RMSE)。在实际水样检测实验中,经过该模型补偿后氨氮传感器的输出值与实验室内根据《水质氨氮测定》(HJ 535—2009)测得的氨氮标准值之间最高偏差为4.76%,最低偏差为0.64%,偏差范围符合预期补偿目标,表明模型具有较高的温度补偿精度,对非训练数据具有良好的泛化能力,能够满足实际使用的精度要求。 展开更多
关键词 氨氮 铵离子选择性电极 温度补偿 粒子优化算法(PSO) 支持向量回归(SVR)
在线阅读 下载PDF
基于贝叶斯优化支持向量回归的流线型箱梁颤振气动外形优化方法 被引量:5
14
作者 封周权 邓佳逸 +1 位作者 华旭刚 陈政清 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期275-284,共10页
为解决风洞试验耗时费力和计算流体动力学(CFD)计算量大的问题,提出了一套新型流线型箱梁断面颤振性能气动外形优化方法.以风嘴参数为设计变量,利用CFD获取断面三分力系数,以准定常理论估算的颤振临界风速为优化目标.根据贝叶斯优化支... 为解决风洞试验耗时费力和计算流体动力学(CFD)计算量大的问题,提出了一套新型流线型箱梁断面颤振性能气动外形优化方法.以风嘴参数为设计变量,利用CFD获取断面三分力系数,以准定常理论估算的颤振临界风速为优化目标.根据贝叶斯优化支持向量回归构建代理模型,利用混合加点法更新模型,通过寻优算法确定最优断面.以虎门大桥为例,得到桥梁在可行域内颤振性能最佳的断面方案.结果表明,风嘴升高,颤振临界风速先增后减,相对高度为0.6时整体性能较优,相对高度为0.7时可获得最优断面.底板宽增加,颤振性能显著降低,下斜腹板倾角为14°~16°时颤振性能最优.断面优化后桥梁颤振临界风速相比原始断面提升约31%. 展开更多
关键词 流线型箱梁 气动优化 颤振性能 支持向量回归 贝叶斯优化 准定常理论
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
15
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 机器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测 被引量:4
16
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
在线阅读 下载PDF
基于粒子群优化的改进加权支持向量回归的变压器顶层油温预测 被引量:18
17
作者 李诗勇 薛静 +4 位作者 吴冕之 谢荣斌 靳斌 张鸿儒 李清泉 《高压电器》 CAS CSCD 北大核心 2021年第12期103-109,共7页
建立一种粒子群优化的改进加权支持向量回归的变压器顶层油温模型,能够准确的估计变压器顶层油温。该模型根据环境温度、变压器负荷、变压器顶层油温等样本数据建立支持向量回归模型,分析变压器顶层油温与其他各因素之间的联系,根据不... 建立一种粒子群优化的改进加权支持向量回归的变压器顶层油温模型,能够准确的估计变压器顶层油温。该模型根据环境温度、变压器负荷、变压器顶层油温等样本数据建立支持向量回归模型,分析变压器顶层油温与其他各因素之间的联系,根据不同影响因素建立支持向量超平面将变压器顶层油温预测限制在一个合理区间,根据支持向量机的惩罚因子和松弛因子的选择使该区间缩小至与实际变压器顶层油温的误差达到最小,使以变压器顶层油温为预测目标函数的预测模型精度最高。在支持向量回归模型建立时采用粒子群算法对其惩罚因子和松弛因子进行寻优以使支持向量回归模型预测效果达到最优。通过主成分分析方法对核函数进行改进从而优化支持向量回归模型,相比粒子群优化的支持向量机考虑数据特征量的权重,预测结果准确率更高。该模型利用支持向量回归方法不需要大量样本、不涉及概率测度、能够处理多维影响因素等优点,能够应对变压器油温短期预测数据不足或采集的油温相关数据维度较多的情况,给出准确的顶层油温预测结果。 展开更多
关键词 电力变压器 顶层油温预测 粒子优化 加权支持向量
在线阅读 下载PDF
基于粒子群优化-支持向量回归的高速公路短时交通流预测 被引量:22
18
作者 邹宗民 郝龙 +2 位作者 李全杰 陈宏俊 康乐 《科学技术与工程》 北大核心 2021年第12期5118-5123,共6页
为实现高速公路短时非线性交通流的精准预测,依托高速公路运营积累的大量数据资源,构建了基于粒子群优化(particle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)预测模型。首先,对获取的高速公路交通流数据... 为实现高速公路短时非线性交通流的精准预测,依托高速公路运营积累的大量数据资源,构建了基于粒子群优化(particle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)预测模型。首先,对获取的高速公路交通流数据进行异常值剔除、缺失值填充以及归一化等预处理;其次,基于SVR算法采用滑动窗口的方式建立预测模型,并基于具有较强寻优能力的PSO优化算法获取SVR模型的最优参数组合;最后,通过京台高速济南西收费站断面交通流数据进行实例验证。模型的预测结果表明,所提出的高速公路短时交通流预测模型能够满足实际需求,且相较反向传播(back propagation,BP)、差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)模型具有较高的准确性,可为日后高速公路运营决策提供理论支持。 展开更多
关键词 高速公路 交通流预测 粒子优化 支持向量回归
在线阅读 下载PDF
基于粒子群优化-支持向量回归的变压器绕组温度软测量模型 被引量:34
19
作者 彭道刚 陈跃伟 +1 位作者 钱玉良 黄超 《电工技术学报》 EI CSCD 北大核心 2018年第8期1742-1749,1761,共9页
针对变压器绕组热点温度测量问题,建立一种基于粒子群优化-支持向量回归算法的变压器绕组热点温度软测量模型,并验证此模型的预测效果。利用基于被动聚集的改进粒子群优化(PSO)算法,优化支持向量机的支持向量回归(SVR)模型的参数组合,... 针对变压器绕组热点温度测量问题,建立一种基于粒子群优化-支持向量回归算法的变压器绕组热点温度软测量模型,并验证此模型的预测效果。利用基于被动聚集的改进粒子群优化(PSO)算法,优化支持向量机的支持向量回归(SVR)模型的参数组合,并且找到其最优解。充分考虑变压器运行的相关因素,对绕组热点温度软测量模型进行训练与学习,实现对难以直接测得的绕组热点温度的预测。通过对某市110kV变压器运行数据的训练和预测结果,并将其与BP神经网络和SVR方法的结果对比,证明所建模型具有较好的预测能力。 展开更多
关键词 变压器绕组 热点温度 粒子优化 支持向量回归
在线阅读 下载PDF
基于改进灰狼优化与支持向量回归的滑坡位移预测 被引量:5
20
作者 任帅 纪元法 +2 位作者 孙希延 韦照川 林子安 《计算机应用》 CSCD 北大核心 2024年第3期972-982,共11页
针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟... 针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟合对趋势项进行预测;其次,对滑坡周期项的影响因素进行分类,采用VMD对原始影响因子序列进行分解获得最优序列;再次,提出一种结合SVR与基于改进Circle多策略的灰狼优化算法CTGWO-SVR(Circle Tactics Grey Wolf Optimizer with SVR)对滑坡周期项进行预测;最后采用时间序列加法模型求出累计位移预测序列,并采用灰色预测的后验证差校验和小概率误差对模型进行评价。实验结果表明,与GA-SVR和GWO-SVR模型相比,CTGWO-SVR的预测精度更高,拟合度达到0.979,均方根误差分别减小了51.47%与59.25%,预测精度等级为一级,可满足滑坡预测的实时性和准确性要求。 展开更多
关键词 滑坡位移预测 位移分解 时间序列 变分模态分解 灰色关联分析 灰狼优化算法 支持向量回归
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部