期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
新的全局—局部最优最小值粒子群优化算法 被引量:8
1
作者 吴琳丽 赵海娜 +1 位作者 汪涛 梁华 《计算机应用》 CSCD 北大核心 2009年第12期3270-3272,共3页
为了提高粒子群优化算法的收敛速度,克服陷入局部最优的缺点,在全局—局部最优粒子群优化算法的基础上,提出了一种新的改进粒子群优化算法——全局—局部最优最小值粒子群优化算法。该算法把惯性权重和学习因子分别通过结合全局和局部... 为了提高粒子群优化算法的收敛速度,克服陷入局部最优的缺点,在全局—局部最优粒子群优化算法的基础上,提出了一种新的改进粒子群优化算法——全局—局部最优最小值粒子群优化算法。该算法把惯性权重和学习因子分别通过结合全局和局部最优最小值来进行改写,速度更新公式也做了相应的简化。仿真实验表明该算法在收敛速度和寻优质量上都优于基于LDIW策略改进的粒子群算法和全局—局部最优粒子群算法。 展开更多
关键词 粒子优化算法 全局-局部最粒子优化算法 惯性权重
在线阅读 下载PDF
基于改进粒子群算法的资源受限项目进度研究 被引量:3
2
作者 单汨源 吴娟 +1 位作者 吴亮红 刘琼 《计算机工程与应用》 CSCD 北大核心 2007年第15期26-28,104,共4页
资源受限的项目进度问题是经典的NP-hard问题,在研究以往求解方法的基础上,应用一种新的群智能算法——粒子群算法,对粒子群优化算法的搜索能力进行改进,结合Gbest模型与Pbest模型的优点,提出使粒子在搜索的前期有较强的全局搜索能力,... 资源受限的项目进度问题是经典的NP-hard问题,在研究以往求解方法的基础上,应用一种新的群智能算法——粒子群算法,对粒子群优化算法的搜索能力进行改进,结合Gbest模型与Pbest模型的优点,提出使粒子在搜索的前期有较强的全局搜索能力,尽可能多地发现可能全局最优的种子,而在搜索的后期则具有较强的局部搜索能力,用提高算法的收敛速度和精度的复合最优模型粒子群算法对RCPSP问题进行了求解,最后用文献[8]中的算例进行了仿真实验,实验结果验证了此算法的可行性与优越性。 展开更多
关键词 资源受限 项目进度 粒子优化 复合最粒子优化算法(COMPSO)
在线阅读 下载PDF
弹性飞机的混合H_2/H_∞最优PID控制器设计
3
作者 章萌 章卫国 +1 位作者 李爱军 孙勇 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第2期310-317,共8页
针对弹性飞机强鲁棒性、低阶次、低增益鲁棒控制器的设计问题,以某弹性飞机12阶模型为研究对象,研究了基于弹性飞机降阶模型的混合H2/H∞最优PID控制器的设计。首先基于平衡截断法得到了6阶降阶模型。然后,根据全阶模型和降阶模型的频... 针对弹性飞机强鲁棒性、低阶次、低增益鲁棒控制器的设计问题,以某弹性飞机12阶模型为研究对象,研究了基于弹性飞机降阶模型的混合H2/H∞最优PID控制器的设计。首先基于平衡截断法得到了6阶降阶模型。然后,根据全阶模型和降阶模型的频域降阶误差选取了合适的鲁棒加权函数。之后,给出了系统跟踪误差的H2范数的一种简化计算方法用于计算H2范数优化设计指标。最后使用粒子群优化算法进行了混合H2/H∞最优PID控制器参数的优化得到了最优PID控制器。仿真结果表明,与H∞混合灵敏度控制器相比,混合H2/H∞最优PID控制器阶次更低,并能同时镇定参数和非参数两种不确定性具有更强的鲁棒性;对弹性形变有较好的抑制作用,对刚性模态也取得了很好的控制效果。 展开更多
关键词 弹性飞机 降阶模型 混合H2/H∞最PID控制器 粒子优化算法
在线阅读 下载PDF
基于加权类比的软件成本估算方法 被引量:3
4
作者 赵小敏 曹光斌 +1 位作者 费梦钰 朱李楠 《计算机科学》 CSCD 北大核心 2018年第B11期501-504,531,共5页
软件成本估算是软件项目开发周期、管理决策和软件项目质量中最重要的问题之一。针对软件研发成本估算在软件行业中普遍存在不准确、难以估算的问题,提出一种基于加权类比的软件成本估算方法,将相似度距离定义为具有相关性的马氏距离,... 软件成本估算是软件项目开发周期、管理决策和软件项目质量中最重要的问题之一。针对软件研发成本估算在软件行业中普遍存在不准确、难以估算的问题,提出一种基于加权类比的软件成本估算方法,将相似度距离定义为具有相关性的马氏距离,通过优化的粒子群算法优化后得到权值,并用类比法估算软件成本。实验结果表明,该方法具有比非加权类比、神经网络等非计算模型方法更高的精确度。实际案例测试表明,该方法在软件开发初期基于需求分析的软件成本估算比专家估算有更精确的评估结果。 展开更多
关键词 软件成本估算 马氏距离 加权类比 粒子群优优化
在线阅读 下载PDF
双馈风力发电机参数分步辨识及观测量的选择 被引量:32
5
作者 潘学萍 鞠平 +3 位作者 徐倩 刘永康 吴峰 金宇清 《中国电机工程学报》 EI CSCD 北大核心 2013年第13期116-126,共11页
参数辨识依赖于激励信号与观测量的选择。该文根据观测量的模式增量计算,确定系统动态在不同观测量上的可观性,据此选择观测量。根据不同扰动激发出的系统主导动态,确定在该扰动下的重要参数。采用分步辨识思路,先根据电网侧故障辨识双... 参数辨识依赖于激励信号与观测量的选择。该文根据观测量的模式增量计算,确定系统动态在不同观测量上的可观性,据此选择观测量。根据不同扰动激发出的系统主导动态,确定在该扰动下的重要参数。采用分步辨识思路,先根据电网侧故障辨识双馈风力发电机电气部分参数,再基于输入侧风速变化辨识机械部分各参数。辨识方法采用全局最优位置变异粒子群算法,仿真算例验证了该方法的有效性。 展开更多
关键词 观测量 扰动 双馈风力发电机 轨迹灵敏度 参数辨识 全局最位置变异粒子优化算法
在线阅读 下载PDF
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
6
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
7
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Layout problem of multi-component systems arising for improving maintainability 被引量:5
8
作者 罗旭 杨拥民 +2 位作者 葛哲学 温熙森 官凤娇 《Journal of Central South University》 SCIE EI CAS 2014年第5期1833-1841,共9页
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili... To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability. 展开更多
关键词 MAINTAINABILITY layout problem OPTIMIZATION multi-component system multi-objective particle swarm optimization
在线阅读 下载PDF
Reliability-based design optimization for flexible mechanism with particle swarm optimization and advanced extremum response surface method 被引量:1
9
作者 张春宜 宋鲁凯 +2 位作者 费成巍 郝广平 刘令君 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2001-2007,共7页
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr... To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well. 展开更多
关键词 reliability-based design optimization flexible robot manipulator artificial neural network particle swarm optimization advanced extremum response surface method
在线阅读 下载PDF
基于Lbest PSO和NNs的电液伺服系统输出力PID控制研究
10
作者 邓文佶 《计算机应用与软件》 CSCD 2015年第8期102-105,113,共5页
为了实现电液伺服系统输出力的稳定控制,结合局部最优粒子群优化算法和神经网络模型,提出一种PID控制器设计方法。该方法将神经网络模型(NNS)与PID控制器耦合,得到基于神经网络的PID控制器参数整定结构;再采用局部最优粒子群优化算法(Lb... 为了实现电液伺服系统输出力的稳定控制,结合局部最优粒子群优化算法和神经网络模型,提出一种PID控制器设计方法。该方法将神经网络模型(NNS)与PID控制器耦合,得到基于神经网络的PID控制器参数整定结构;再采用局部最优粒子群优化算法(Lbest PSO)确定神经网络的权重,从而得到基于局部最优粒子群优化算法和神经网络的PID控制算法;最后将提出的PID控制算法用于控制虚拟的电液伺服加载系统,以进行仿真实验。仿真结果表明,由该PID控制器控制的电液伺服系统的输出力平稳地收敛于给定力,从而提高了系统的稳定性。 展开更多
关键词 PID控制器 电液伺服系统 神经网络 局部最粒子优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部