期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
和声搜索优化粒子滤波的视频目标跟踪方案 被引量:1
1
作者 李和香 邓辉舫 《计算机工程与设计》 北大核心 2017年第7期1905-1910,共6页
针对基于粒子滤波(particle filter,PF)的目标跟踪算法易产生样本贫化的问题,提出一种利用和声搜索算法(harmony search,HS)优化重采样粒子滤波的视频目标跟踪方案。采用高斯混合模型(Gaussian mixture model,GMM)对背景建模,在目标视... 针对基于粒子滤波(particle filter,PF)的目标跟踪算法易产生样本贫化的问题,提出一种利用和声搜索算法(harmony search,HS)优化重采样粒子滤波的视频目标跟踪方案。采用高斯混合模型(Gaussian mixture model,GMM)对背景建模,在目标视频帧中执行粒子滤波,通过直方图匹配法为每个粒子分配权重;利用和声搜索算法生成新的粒子,通过放弃一部分粒子来提高样本的随机性;对粒子进行重要性重采样,根据粒子权重估计目标状态。在BoBoT和DTU数据集上的实验结果表明,所提算法对目标背景、缩放、遮挡和光照等变化具有较好的鲁棒性,相比其它较新的目标跟踪算法,该算法取得了更好的性能。 展开更多
关键词 目标跟踪 和声搜索算法 采样粒子滤波 样本随机性 高斯混合模型
在线阅读 下载PDF
改进粒子群算法优化的非线性模型预测控制 被引量:7
2
作者 赵婷婷 程奇峰 王志丰 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2015年第4期517-522,共6页
针对带有有界随机扰动和概率约束的非线性模型预测控制的优化控律求解问题.采用引入粒子滤波重采样步骤改进的粒子群算法,并与粒子的变异操作相结合来求解非线性模型预测控制优化控制律的方法,提高了算法的收敛速度和控制效果.对概率约... 针对带有有界随机扰动和概率约束的非线性模型预测控制的优化控律求解问题.采用引入粒子滤波重采样步骤改进的粒子群算法,并与粒子的变异操作相结合来求解非线性模型预测控制优化控制律的方法,提高了算法的收敛速度和控制效果.对概率约束的处理,采用对不满足约束的粒子进行有效替代的方法,进而得到满足概率约束条件的优化控制律.仿真结果表明了提出的改进粒子群算法用于优化求解非线性模型预测控制的优化控制律的可行性和有效性. 展开更多
关键词 非线性模型预测控制 随机扰动 粒子群算法 粒子滤波重采样 概率约束
在线阅读 下载PDF
基于LAI时间序列重构数据的冬小麦物候监测 被引量:20
3
作者 刘峻明 李曼曼 +1 位作者 王鹏新 黄健熙 《农业工程学报》 EI CAS CSCD 北大核心 2013年第19期120-129,共10页
农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间... 农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间序列数据,基于重构数据提取冬小麦返青期、抽穗期和成熟期等关键物候期。重构结果表明,重构的LAI具有良好的时间连续性和空间连续性,可减缓WOFOST作物模型LAI变化剧烈程度,峰值出现时间与遥感LAI曲线基本同步,且可一定程度上解决遥感观测LAI数值整体偏低和数据缺失的问题。物候期监测结果表明,在空间分布上与冬小麦实际生长状况基本相符,时间上也较为合理,但因在返青期存在LAI高初始值、成熟期存在LAI下限不确定性等问题致使在具体日期存在偏差。 展开更多
关键词 遥感 监测 数据处理 物候 叶面积指数 采样粒子滤波 冬小麦
在线阅读 下载PDF
精密数控车床主轴热误差建模 被引量:7
4
作者 郭辰光 韩雪 +1 位作者 李源 谢华龙 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1731-1742,共12页
开展了精密数控车床主轴系统热误差补偿的实验与建模方法的研究。建立了精密数控车床主轴系统轴向与径向偏转热误差补偿模型以增强其误差补偿能力,并提高机床加工精度。构建了主轴系统热误差测试平台,应用五点法测试主轴系统热误差,使... 开展了精密数控车床主轴系统热误差补偿的实验与建模方法的研究。建立了精密数控车床主轴系统轴向与径向偏转热误差补偿模型以增强其误差补偿能力,并提高机床加工精度。构建了主轴系统热误差测试平台,应用五点法测试主轴系统热误差,使用热电偶与红外热像仪测量主轴系统温升关键点温度变化数据,应用灰色综合关联分析法实现温度敏感测点辨识。构建了基于粒子滤波重采样粒子群算法的热误差预测模型,对模型预测效果进行评价。结果表明:基于粒子滤波重采样粒子群热误差补偿模型得到的轴向热误差预测残差为-1.29μm^1.55μm,建模精度为95.04%;y向热偏转误差预测残差为-4.68×10^(-6°)~9.66×10^(-6°),建模精度为91.26%;z向热偏转误差预测残差为-5.83×10^(-6°)~8.59×10^(-6°),建模精度为93.24%。实验结果证明该热误差补偿模型具有较高的预测精度,具有较强的工程应用价值。 展开更多
关键词 精密数控车床 主轴系统 热误差建模 热误差补偿 粒子滤波重采样粒子群算法
在线阅读 下载PDF
Particle filter based on iterated importance density function and parallel resampling 被引量:1
5
作者 武勇 王俊 曹运合 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3427-3439,共13页
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher... The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking. 展开更多
关键词 particle filter iterated importance density function least squares estimate parallel resampling graphics processing unit
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部