Experimental investigations were carried out to determine the Al2O3/water and SiO2/water nanofluids flowing through a circular tube. convective heat transfer performance and pressure drop of Measurements show that the...Experimental investigations were carried out to determine the Al2O3/water and SiO2/water nanofluids flowing through a circular tube. convective heat transfer performance and pressure drop of Measurements show that the addition of small amounts of nano-sized Al2O3 particles to the base fluid increases heat transfer coefficients considerably, while the result for the silica nanofluids contradicts with the alumina nanofluids and this leads to some interesting results. In the case of alumina nanofluids, an average increase of 16% in convective heat transfer coefficient is observed with an average penalty of 28% in pressure drop. Moreover, flow resistance increases significantly compared to the base fluid even at very low concentrations of nanofluids. Finally, measured heat transfer coefficients are compared with predicted ones from the correlation of Shah under the same conditions.展开更多
In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with p...In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.展开更多
文摘Experimental investigations were carried out to determine the Al2O3/water and SiO2/water nanofluids flowing through a circular tube. convective heat transfer performance and pressure drop of Measurements show that the addition of small amounts of nano-sized Al2O3 particles to the base fluid increases heat transfer coefficients considerably, while the result for the silica nanofluids contradicts with the alumina nanofluids and this leads to some interesting results. In the case of alumina nanofluids, an average increase of 16% in convective heat transfer coefficient is observed with an average penalty of 28% in pressure drop. Moreover, flow resistance increases significantly compared to the base fluid even at very low concentrations of nanofluids. Finally, measured heat transfer coefficients are compared with predicted ones from the correlation of Shah under the same conditions.
基金Projects(51176029,50876020) supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B00) supported by the 12th Five-Year National Science and Technology Support Key Program of China Project(ybjj1124) supported by the Foundation of Graduate School of Southeast University,China
文摘In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.