In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstruc...In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.展开更多
Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study ...Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.展开更多
基金Project(2016YFB0700300)supported by the National Key Research and Development Program of China。
文摘In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.
基金PTU Jalandhar,Manufacturing Research Lab GNDEC,Ludhiana and DST GOI for financial support
文摘Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.