期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自然最近邻优化的密度峰值聚类算法 被引量:23
1
作者 金辉 钱雪忠 《计算机科学与探索》 CSCD 北大核心 2019年第4期711-720,共10页
针对现有的基于密度的聚类算法存在参数敏感,处理非球面数据和复杂流形数据聚类效果差的问题,提出一种新的基于密度峰值的聚类算法。该算法首先根据自然最近邻居的概念确定数据点的局部密度,然后根据密度峰局部密度最高并且被稀疏区域... 针对现有的基于密度的聚类算法存在参数敏感,处理非球面数据和复杂流形数据聚类效果差的问题,提出一种新的基于密度峰值的聚类算法。该算法首先根据自然最近邻居的概念确定数据点的局部密度,然后根据密度峰局部密度最高并且被稀疏区域分割来确定聚类中心,最后提出一种新的类簇间相似度概念来解决复杂流形问题。在实验中,该算法在合成和实际数据集中的表现比DPC(clustering by fast search and find of density peaks)、DBSCAN(density-based spatial clustering of applications with noise)和K-means算法要好,并且在非球面数据和复杂流形数据上的优越性特别大。 展开更多
关键词 自然最近邻居 局部密 稀疏区域 类簇间相似度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部