期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应原型特征类矫正的小样本学习方法
1
作者 赵红 钟杨清 +1 位作者 金杰 邹林华 《自动化学报》 北大核心 2025年第2期475-484,共10页
针对小样本学习过程中样本数量不足导致的性能下降问题,基于原型网络(Prototype network,ProtoNet)的小样本学习方法通过实现查询样本与支持样本原型特征间的距离度量,从而达到很好的分类性能.然而,这种方法直接将支持集样本均值视为类... 针对小样本学习过程中样本数量不足导致的性能下降问题,基于原型网络(Prototype network,ProtoNet)的小样本学习方法通过实现查询样本与支持样本原型特征间的距离度量,从而达到很好的分类性能.然而,这种方法直接将支持集样本均值视为类原型,在一定程度上加剧了对样本数量稀少情况下的敏感性.针对此问题,提出了基于自适应原型特征类矫正的小样本学习方法(Few-shot learning based on class rectification via adaptive prototype features,CRAPF),通过自适应生成原型特征来缓解方法对数据细微变化的过度响应,并同步实现类边界的精细化调整.首先,使用卷积神经网络构建自适应原型特征生成模块,该模块采用非线性映射获取更为稳健的原型特征,有助于减弱异常值对原型构建的影响;然后,通过对原型生成过程的优化,提升不同类间原型表示的区分度,进而强化原型特征对类别表征的整体效能;最后,在3个广泛使用的基准数据集上的实验结果显示,该方法提升了小样本学习任务的表现. 展开更多
关键词 小样本学习 原型网络 原型特征 类矫正
在线阅读 下载PDF
用于脑部核磁共振图像分割的具有抗噪能力的BCFCM算法 被引量:3
2
作者 栾方军 周佳鹏 曾子铭 《计算机科学》 CSCD 北大核心 2015年第10期311-315,320,共6页
脑部核磁共振成像(MRI)是脑疾病临床诊断的重要手段,而脑组织的准确分割则是其中一个重要的环节。然而MRI图像中普遍存在的噪声和偏移场给脑组织的准确分割造成了很大的困难。在MRI图像分割算法中,偏移场矫正模糊C-均值算法(BCFCM)在模... 脑部核磁共振成像(MRI)是脑疾病临床诊断的重要手段,而脑组织的准确分割则是其中一个重要的环节。然而MRI图像中普遍存在的噪声和偏移场给脑组织的准确分割造成了很大的困难。在MRI图像分割算法中,偏移场矫正模糊C-均值算法(BCFCM)在模糊C-均值聚类算法(FCM)的基础上增加了对偏移场的估计和空间信息的使用,可以很好地消除图像偏移场对分割造成的影响。但是BCFCM算法由于没有考虑到噪声对偏移场估计的影响,因此对高噪声图像的分割效果欠佳。针对MRI脑组织分割,在图像预处理过程中提出一种快速的分割方法来去除颅骨及其附属物。此外,提出基于BCFCM的改进算法,该改进算法在迭代过程中可以通过对噪声强度的估计来自适应地改变目标函数窗口的大小。同时,该算法引入高斯核函数对偏移场进行平滑处理,并通过阈值限制偏移场的估计值,以有效地避免偏移场的错误估计对分割结果的影响。实验结果表明,改进后的算法不仅可以有效准确地分割脑组织,而且具有较强的抗噪声和处理偏移场的能力。 展开更多
关键词 磁共振成像 偏移场矫正模糊C-均值聚 噪声估计 自适应 偏移场限制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部