期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于合作博弈Shapley值法的类激活映射算法
1
作者 许莉 常雨晴 +2 位作者 柴霁轩 宛旭 范纯龙 《计算机工程与设计》 北大核心 2025年第3期795-803,共9页
为加深对深度神经网络内部决策依据的理解,更好进行网络的调试和应用,提出一种结合特征重要性算法和类激活映射(CAM)的计算机视觉可解释性技术(Shapley-CAM)。利用合作博弈理论中的沙普利值算法计算特征图对最终结果的贡献,以此作为权... 为加深对深度神经网络内部决策依据的理解,更好进行网络的调试和应用,提出一种结合特征重要性算法和类激活映射(CAM)的计算机视觉可解释性技术(Shapley-CAM)。利用合作博弈理论中的沙普利值算法计算特征图对最终结果的贡献,以此作为权重对特征图进行加权求和,得到类激活图,对神经网络模型的决策机制进行解释。重点考虑网络最后一层中每个特征图对结果的影响,可视化输入图像中对模型输出造成正向影响的区域。实验结果表明,该方法能够更准确地解释深度神经网络的决策依据,在定位能力和算法忠诚度等方面的性能得到了显著提升。 展开更多
关键词 深度神经网络 特征重要性 类激活映射 可解释性 合作博弈 沙普利值 特征图
在线阅读 下载PDF
基于空间权重和层间相关性的可解释浅层类激活映射算法研究
2
作者 程艳 何慧娟 +2 位作者 陈彦滢 姚楠楠 林国波 《计算机科学》 北大核心 2025年第S1期498-504,共7页
卷积神经网络在计算机视觉领域具有重要作用,然而其黑盒特性使人们理解其决策理由变得困难,严重阻碍了其在某些安全领域的应用。传统的类激活映射(Class Activation Mapping,CAM)算法通常受限于深层神经元的可解释性,对浅层神经元的解... 卷积神经网络在计算机视觉领域具有重要作用,然而其黑盒特性使人们理解其决策理由变得困难,严重阻碍了其在某些安全领域的应用。传统的类激活映射(Class Activation Mapping,CAM)算法通常受限于深层神经元的可解释性,对浅层神经元的解释能力较弱且存在较多噪声。为了应对这一挑战,提出一种可解释浅层的类激活映射算法,并生成细粒度的解释。该算法基于相关性传播理论,考虑相邻层之间的相关性,得到层间相关性权重,并将应用了空间权重的特征图作为掩码,与层间相关性权重相乘,从而实现浅层解释。实验结果表明,所提算法与解释浅层最优的LayerCAM相比,卷积神经网络每层生成的类激活图的删除插入测试综合评分在ILSVRC2012 val数据集上最高提高了2.73,最低提高了0.24,在CUB-200-2011数据集上最高提高了1.31,最低提高了0.38。 展开更多
关键词 类激活映射算法 卷积神经网络 浅层神经元 空间权重 层间相关性
在线阅读 下载PDF
面向SAR目标识别深度网络可理解的类激活映射方法 被引量:1
3
作者 崔宗勇 杨致远 +2 位作者 蒋阳 曹宗杰 杨建宇 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期428-442,共15页
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一... 随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律。该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度。该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性。在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法。 展开更多
关键词 SAR目标识别 网络可理解性 SAR杂波特性 类激活映射 面积约束置信度下降率
在线阅读 下载PDF
基于改进类激活映射的织物疵点检测 被引量:1
4
作者 李飞龙 李敏 +1 位作者 何儒汉 崔树芹 《计算机应用与软件》 北大核心 2024年第1期246-252,共7页
为实现弱监督条件下的织物疵点检测,提出一种基于改进类激活映射(Class activation mapping,CAM)的疵点检测方法。在卷积神经网络中加入SE模块,并将深层和浅层卷积层进行结合,以此提高网络的分类性能;为了提高疵点定位的准确性,将两种... 为实现弱监督条件下的织物疵点检测,提出一种基于改进类激活映射(Class activation mapping,CAM)的疵点检测方法。在卷积神经网络中加入SE模块,并将深层和浅层卷积层进行结合,以此提高网络的分类性能;为了提高疵点定位的准确性,将两种分辨率的类激活图进行融合来生成改进的类激活图。实验结果表明,该算法对无疵点、孔、污渍和纱疵四个类别织物图像的识别准确率达到了96.88%,并且在数据集只有图像级标注的情况下,实现了织物疵点的定位。 展开更多
关键词 疵点检测 弱监督 织物 类激活映射 卷积神经网络
在线阅读 下载PDF
基于高分辨率类激活映射算法的弱监督目标实时检测
5
作者 孙辉 史玉龙 +2 位作者 张健一 王蕊 王羽玥 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期1051-1059,共9页
受益于深度学习的发展,目标检测技术在各类视觉任务中得到广泛关注。然而,获取目标的边框标注需要高昂的时间和人工成本,阻碍了目标检测技术在实际场景中的应用。为此,该文在仅使用图像类别标签的基础上,提出一种基于高分辨率类激活映... 受益于深度学习的发展,目标检测技术在各类视觉任务中得到广泛关注。然而,获取目标的边框标注需要高昂的时间和人工成本,阻碍了目标检测技术在实际场景中的应用。为此,该文在仅使用图像类别标签的基础上,提出一种基于高分辨率类激活映射算法的弱监督目标实时检测方法,降低网络对目标实例标注的依赖。该方法将目标检测细划分为弱监督目标定位和目标实时检测两个子任务。在弱监督定位任务中,该文利用对比层级相关性传播理论设计了一种新颖的高分辨率类激活映射算法(HR-CAM),用于获取高质量目标类激活图,生成目标伪检测标注框。在实时检测任务中,该文选取单镜头多盒检测器(SSD)作为目标检测网络,并基于类激活图设计目标感知损失函数(OA-Loss),与目标伪检测标注框共同监督SSD网络的训练过程,提高网络对目标的检测性能。实验结果表明,该文方法在CUB200和TJAB52数据集上实现了对目标准确高效的检测,验证了该文方法的有效性和优越性。 展开更多
关键词 弱监督定位 目标检测 对比层级相关性传播理论 类激活映射算法 目标感知损失函数
在线阅读 下载PDF
一种结合类激活映射的半监督图像分类方法 被引量:3
6
作者 王宪保 肖本督 姚明海 《小型微型计算机系统》 CSCD 北大核心 2022年第6期1204-1209,共6页
半监督学习要求无标记数据集远大于标记数据集,然而无标记数据集中包含的复杂无关信息又会对模型训练造成负面影响.针对此问题,本文提出了一种基于增强的均值教师模型的半监督图像分类方法.首先根据类激活映射的工作机制,构建一个具有... 半监督学习要求无标记数据集远大于标记数据集,然而无标记数据集中包含的复杂无关信息又会对模型训练造成负面影响.针对此问题,本文提出了一种基于增强的均值教师模型的半监督图像分类方法.首先根据类激活映射的工作机制,构建一个具有类激活映射功能的网络;然后将无标记数据集输入结合类激活映射的目标初定位网络,得到目标初定位图;最后将标记图像和目标初定位图像组成训练数据集,训练得到半监督图像分类器.本文设置了标记数据占比、骨干网络、数据集的对比实验,结果表明,本文算法在Top1和Top5上的表现优于现有算法,说明了本文算法的可行性和有效性. 展开更多
关键词 半监督学习 图像分 卷积神经网络 类激活映射
在线阅读 下载PDF
多茶类CNN图像识别的数据增强优化及类激活映射量化评价 被引量:4
7
作者 章展熠 张宝荃 +5 位作者 王周立 杨垚 范冬梅 何卫中 马军辉 林杰 《茶叶科学》 CAS CSCD 北大核心 2023年第3期411-423,共13页
我国茶叶种类繁多,识别难度大。卷积神经网络(Convolutionalneuralnetwork,CNN)图像识别具有客观性、适应复杂图片背景且可移植于移动端的优势。但当前茶叶CNN图像识别缺乏对数据增强优化和识别准确性客观评价的研究,限制了模型识别的... 我国茶叶种类繁多,识别难度大。卷积神经网络(Convolutionalneuralnetwork,CNN)图像识别具有客观性、适应复杂图片背景且可移植于移动端的优势。但当前茶叶CNN图像识别缺乏对数据增强优化和识别准确性客观评价的研究,限制了模型识别的鲁棒性和泛化能力。采集29种常见茶类共6 123张图像构建数据集,对比了10种图像数据增强方法的ResNet-18(Residual network-18)训练效果;为了客观评价模型识别区域的准确性,构建了2个梯度加权类激活映射(Gradient-weighted class activation mapping,Grad-CAM)量化评价指标(IOB和MPI)。结果表明,网格擦除(Ratio=0.3)、分辨率扰动和HSV(Hue,Saturation,Value)颜色空间扰动是较优的数据增强方法,准确率(Accuracy)、损失值(Loss)、IOB和MPI等4个指标综合表现较优。进一步通过消融实验,得到了最佳的数据增强方法组合—水平镜像翻转+网格擦除(Ratio=0.3)+HSV颜色空间扰动,其模型测试准确率达到了99.82%、损失值仅有0.64,且IOB、MPI指标也表现较优,体现了较好的图像识别区域准确性。本研究对茶叶图像数据增强方法进行了优化,训练得到了高鲁棒性的多茶类CNN图像识别模型,构建的量化指标IOB和MPI也解决了CAM识别区域准确性客观评价的问题。 展开更多
关键词 识别 卷积神经网络 图像识别 数据增强 类激活映射
在线阅读 下载PDF
类激活映射指导数据增强的细粒度图像分类 被引量:3
8
作者 郭文明 王腾亿 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第11期1698-1704,共7页
细粒度图像分类任务的关键在于获取精细的局部特征,为了充分利用数据价值,提出一种面向视觉注意力的数据增强方法,基于类激活映射图(class activation mapping,CAM)生成具有针对性的扩充图像,进而帮助细粒度分类.根据CAM对输入图像进行... 细粒度图像分类任务的关键在于获取精细的局部特征,为了充分利用数据价值,提出一种面向视觉注意力的数据增强方法,基于类激活映射图(class activation mapping,CAM)生成具有针对性的扩充图像,进而帮助细粒度分类.根据CAM对输入图像进行注意力区域裁剪和放大;构造一个流场网格对原图进行采样以夸张该区域,裁剪与夸张后的2种扩充数据能够引导模型学习更细微的特征差异;遮挡图像关键区域,从而促使模型学习其他有效特征.该方法只需要图像级标签,无需边界框和部位标注,可以在不引入其他辅助网络的情况下直接进行端到端训练.在3个公开数据集CUB-200-2011,FGVC-Aircraft和Stanford Cars上的实验结果表明,模型特征提取能力得到有效提升,且Top-1准确率指标优于部分现有先进算法. 展开更多
关键词 细粒度图像分 数据增强 类激活映射 视觉注意力
在线阅读 下载PDF
基于对比层级相关性传播的由粗到细的类激活映射算法研究 被引量:3
9
作者 孙辉 史玉龙 王蕊 《电子与信息学报》 EI CSCD 北大核心 2023年第4期1454-1463,共10页
以卷积神经网络为代表的深度学习算法高度依赖于模型的非线性和调试技术,在实际应用过程中普遍存在黑箱属性,严重限制了其在安全敏感领域的进一步发展。为此,该文提出一种由粗到细的类激活映射算法(CF-CAM),用于对深度神经网络的决策行... 以卷积神经网络为代表的深度学习算法高度依赖于模型的非线性和调试技术,在实际应用过程中普遍存在黑箱属性,严重限制了其在安全敏感领域的进一步发展。为此,该文提出一种由粗到细的类激活映射算法(CF-CAM),用于对深度神经网络的决策行为进行诊断。该算法重新建立了特征图和模型决策之间的关系,利用对比层级相关性传播理论获取特征图中每个位置对网络决策的贡献生成空间级的相关性掩码,找到影响模型决策的重要性区域,再与经过模糊化操作的输入图像进行线性加权重新输入到网络中得到特征图的目标分数,从空间域和通道域实现对深度神经网络进行由粗到细的解释。实验结果表明,相较于其他方法该文提出的CF-CAM在忠实度和定位性能上具有显著提升。此外,该文将CF-CAM作为一种数据增强策略应用于鸟类细粒度分类任务,对困难样本进行学习,可以有效提高网络识别的准确率,进一步验证了CF-CAM算法的有效性和优越性。 展开更多
关键词 卷积神经网络 类激活映射 对比层级相关性传播 细粒度分 数据增强
在线阅读 下载PDF
融合类激活映射和视野注意力的皮肤病变分割 被引量:1
10
作者 张宇 梁凤梅 刘建霞 《计算机工程与应用》 CSCD 北大核心 2023年第21期187-194,共8页
在皮肤镜图像分割问题中,分割精度受多重因素影响,包括图像对比度、病变大小及异物干扰等,为提高分割精度,解决病变边界分割不准等问题,提出一种改进的DeepLab V3+网络。该改进网络一方面生成原图像的类激活映射,融入到网络的编码器中... 在皮肤镜图像分割问题中,分割精度受多重因素影响,包括图像对比度、病变大小及异物干扰等,为提高分割精度,解决病变边界分割不准等问题,提出一种改进的DeepLab V3+网络。该改进网络一方面生成原图像的类激活映射,融入到网络的编码器中作先验信息,为网络提供准确的定位信息并消除部分干扰因素;另一方面,在空洞空间金字塔模块中融合视野注意力机制,实现局部跨视野交互;同时将Dice损失和排序损失相结合作为本网络的损失函数,使网络更关注硬像素的误差,优化分割模型。分别在ISIC-2017和PH2数据集上对所提模型评估,其Jaccard指数(JA)分别达到82.6%和89.2%,准确率分别达到95.2%和96.5%,实验结果表明所提模型分割敏感度更高,综合分割性能较其他先进网络有所提升。 展开更多
关键词 医学图像处理 皮肤病变分割 类激活映射 视野注意力机制 混合损失函数 DeepLab V3+
在线阅读 下载PDF
基于类激活映射的可解释性方法在农作物检测识别中的发展现状与趋势 被引量:2
11
作者 郭文娟 冯全 《智能化农业装备学报(中英文)》 2023年第4期41-48,共8页
深度学习模型被广泛应用于农作物检测和识别领域,其优势在于通过构建不同的功能感知层而优化模型,能够自动提取输入数据的特征,实现端到端地学习。但是该模型中未知的数据处理过程导致模型缺乏可解释性,成为阻碍深度学习应用的主要因素... 深度学习模型被广泛应用于农作物检测和识别领域,其优势在于通过构建不同的功能感知层而优化模型,能够自动提取输入数据的特征,实现端到端地学习。但是该模型中未知的数据处理过程导致模型缺乏可解释性,成为阻碍深度学习应用的主要因素。为克服深度学习模型可解释性不足的缺陷,研究者提出了基于类激活映射的可解释性方法。概述了类激活映射算法Grad-CAM在农作物病害分类和检测、农作物虫害检测识别、农作物品种分类、目标农作物检测以及其他应用上的研究进展,说明了类激活映射算法具有能够可视化任意结构卷积神经网络的优点,分析了类激活映射算法存在解释精细度不高、梯度不稳定、缺乏评估标准以及应用背景单一的不足,提出了构建既具有高准确率又具有可解释性的模型、构建新型解释算法、建立可解释性算法统一的评估标准和保证可解释性算法正确性的发展趋势。 展开更多
关键词 深度学习 卷积神经网络 可解释性 农作物检测识别 类激活映射算法 Grad-CAM
在线阅读 下载PDF
基于深度学习的太阳黑子群磁类型分类
12
作者 尹耀 李依洋 +6 位作者 黄狮勇 徐思博 袁志刚 吴红红 姜奎 熊启洋 林仁桐 《空间科学学报》 北大核心 2025年第2期253-265,共13页
太阳活动作为太阳大气层中能量释放和物质运动的显著表现形式,是空间天气的主要扰动源,以太阳黑子为代表的剧烈太阳活动可能导致近地空间环境的剧烈变化,进而对人类的生产生活产生深远影响.准确、高效地预报空间天气有助于减少其对人类... 太阳活动作为太阳大气层中能量释放和物质运动的显著表现形式,是空间天气的主要扰动源,以太阳黑子为代表的剧烈太阳活动可能导致近地空间环境的剧烈变化,进而对人类的生产生活产生深远影响.准确、高效地预报空间天气有助于减少其对人类生产生活的影响.本文利用2010-2017年太阳动力学天文台(Solar Dynamics Observatory,SDO)搭载的HMI仪器观测的连续谱图和磁图数据,建立了基于压缩激励模块和深度残差网络的太阳黑子威尔逊山磁类型分类模型.为了有效避免因时间序列连续性导致的模型过拟合问题,采用时序分割法划分数据集,并结合太阳黑子图像的特点应用了数据增强策略,以提高模型的泛化能力.结果表明,提出的模型能够较准确地完成太阳黑子磁分类任务,尤其是在复杂类型黑子的识别方面,相较于传统方法其识别能力得到了显著的提升.此外,使用类激活映射方法对测试集样本进行了可视化研究,分析了模型提取到的特征图像和分类依据,从而提高模型的可解释性. 展开更多
关键词 太阳黑子 深度残差网络 压缩激励模块 数据增强 类激活映射
在线阅读 下载PDF
面向SAR图像目标分类的CNN模型可视化方法 被引量:5
13
作者 李妙歌 陈渤 +1 位作者 王东升 刘宏伟 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期359-373,共15页
卷积神经网络(CNN)在合成孔径雷达(SAR)图像目标分类任务中应用广泛。由于网络工作机理不透明,CNN模型难以满足高可靠性实际应用的要求。类激活映射方法常用于可视化CNN模型的决策区域,但现有方法主要基于通道级或空间级类激活权重,且在... 卷积神经网络(CNN)在合成孔径雷达(SAR)图像目标分类任务中应用广泛。由于网络工作机理不透明,CNN模型难以满足高可靠性实际应用的要求。类激活映射方法常用于可视化CNN模型的决策区域,但现有方法主要基于通道级或空间级类激活权重,且在SAR图像数据集上的应用仍处于起步阶段。基于此,该文从神经元特征提取能力和网络决策依据两个层面出发,提出了一种面向SAR图像的CNN模型可视化方法。首先,基于神经元的激活值,对神经元在其感受野范围内的目标结构学习能力进行可视化,然后提出一种通道-空间混合的类激活映射方法,通过对SAR图像中的重要区域进行定位,为模型的决策过程提供依据。实验结果表明,该方法给出了模型在不同设置下的可解释性分析,有效拓展了卷积神经网络在SAR图像上的可视化应用。 展开更多
关键词 合成孔径雷达 可视化分析 卷积神经网络 类激活映射 神经元
在线阅读 下载PDF
基于改进R-FCN算法与类激活图的销钉类缺陷细粒度检测 被引量:2
14
作者 孙劼 刘光 刘欢 《广东电力》 2023年第6期50-57,共8页
销钉类缺陷常见于输电线路无人机巡检图像中,因图像占比小、缺陷特征不明显等原因,其检测精度低于其他类缺陷。针对该问题,采用基于区域的全卷积神经网络(region-based fully convonlutional networks,R-FCN)算法建立目标检测网络,分析... 销钉类缺陷常见于输电线路无人机巡检图像中,因图像占比小、缺陷特征不明显等原因,其检测精度低于其他类缺陷。针对该问题,采用基于区域的全卷积神经网络(region-based fully convonlutional networks,R-FCN)算法建立目标检测网络,分析混淆矩阵,确定算法改进策略。首先,通过网格化拆分实现高清晰度图像的预处理;其次,构建类别平衡的大间隔Softmax损失函数,平衡样本数量,增大类间方差,改善网络检测精度;最后,通过类激活映射的方法生成金具级类激活图,提取螺栓背景信息,实现2类易混淆螺栓的细粒度分类。在无人机巡检图像数据集中进行测试,比较所提改进算法与其他经典算法的检测结果,验证了改进R-FCN算法对销钉类缺陷的检测能力。 展开更多
关键词 无人机图像检测 销钉缺陷 大间隔Softmax损失函数 别不平衡 类激活映射
在线阅读 下载PDF
可变形卷积网络的解释性研究及其在蝴蝶物种识别模型中的应用
15
作者 王璐 刘东 刘卫光 《计算机应用》 北大核心 2025年第1期261-274,共14页
近年来,可变形卷积网络(DCN)广泛运用于图像识别和分类等领域,然而对该模型的可解释性研究较为有限,它的适用性缺乏充分理论支持。针对上述问题,提出DCN的解释性研究及其在蝴蝶物种识别模型中的应用。首先,引入可变形卷积对VGG16、ResNe... 近年来,可变形卷积网络(DCN)广泛运用于图像识别和分类等领域,然而对该模型的可解释性研究较为有限,它的适用性缺乏充分理论支持。针对上述问题,提出DCN的解释性研究及其在蝴蝶物种识别模型中的应用。首先,引入可变形卷积对VGG16、ResNet50和DenseNet121(Dense Convolutional Network121)分类模型进行改进;其次,采用反卷积和类激活映射(CAM)等可视化手段来对比可变形卷积和标准卷积在特征提取能力上的差异,且通过消融实验结果表明可变形卷积在神经网络的较低层且不连续使用时效果更佳;再次,提出显著性移除(SR)并对CAM的性能和激活特征重要性进行统一评价,同时通过设置不同的移除阈值等多个角度,提高评价的客观性;最后,基于评价结果更高的FullGrad(Full Gradient-weighted)解释模型识别的判断依据。实验结果显示,在Archive_80数据集上,所提出的D_v2-DenseNet121的准确率达到97.03%,相较于DenseNet121分类模型提高了2.82个百分点。可见,可变形卷积的引入赋予了神经网络模型不变性特征提取能力,并提高了分类模型的准确率。 展开更多
关键词 可变形卷积网络 可解释性 蝴蝶物种识别 类激活映射 显著性移除
在线阅读 下载PDF
基于改进SDP和FasterNet-GCAM的滚动轴承故障诊断
16
作者 陈家芳 唐湛恒 周健 《现代制造工程》 北大核心 2025年第7期129-138,41,共11页
对滚动轴承进行故障诊断关乎设备运行安全及稳定可靠性。使用传统卷积神经网络进行故障诊断,模型运算量过大,且易出现过拟合现象从而导致诊断精度不高,端到端模型存在可信度不高等问题。鉴于此,提出一种基于改进对称极坐标(Symmetrized ... 对滚动轴承进行故障诊断关乎设备运行安全及稳定可靠性。使用传统卷积神经网络进行故障诊断,模型运算量过大,且易出现过拟合现象从而导致诊断精度不高,端到端模型存在可信度不高等问题。鉴于此,提出一种基于改进对称极坐标(Symmetrized Dot Pattern,SDP)法和FasterNet-GCAM网络的滚动轴承故障诊断方法。首先,将一维振动信号经过小波阈值降噪处理,再输入经皮尔逊图像相关系数法优化的SDP法生成SDP图像,并通过在FasterNet网络中加入部分卷积(partial convolution)思想,构建成改进的SDP-FasterNet模型进行进一步的特征提取,并完成滚动轴承不同故障的分类诊断。为了验证模型在图像识别过程中决策的可信度,将梯度加权类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)与FasterNet网络相结合,突出SDP图像与决策相关的重要部分。试验结果表明,所提方法相比于其他方法具有更快的收敛速度和更强的鲁棒性,且诊断识别精度达到了99.20%,并提高了诊断过程中的可解释性及可信度,为故障诊断领域提供了具备良好可行性和鲁棒性的轻量化诊断模型。 展开更多
关键词 滚动轴承 故障诊断 FasterNet网络 部分卷积 梯度加权类激活映射 对称极坐标法
在线阅读 下载PDF
基于可解释深度学习及表面增强拉曼光谱的微塑料高效识别方法
17
作者 张艺严 马静 +1 位作者 孙振丽 杜晶晶 《分析测试学报》 北大核心 2025年第8期1557-1567,共11页
微塑料(MPs)污染已成为全球环境的重大挑战。传统检测方法在MPs检测中存在诸多局限,迫切需要开发无需复杂前处理的高灵敏检测技术。为解决MPs检测难题,该研究构建了一种“表面增强拉曼散射基底捕获-深度学习识别-梯度加权类激活映射(Gra... 微塑料(MPs)污染已成为全球环境的重大挑战。传统检测方法在MPs检测中存在诸多局限,迫切需要开发无需复杂前处理的高灵敏检测技术。为解决MPs检测难题,该研究构建了一种“表面增强拉曼散射基底捕获-深度学习识别-梯度加权类激活映射(Grad-CAM)解释”的MPs新型检测方法。研究结果表明,金纳米海绵基底可有效捕获MPs,数据增强与预处理技术可有效提高模型的预测精度。基于一维卷积神经网络(1D-CNN)的多分支二分类深度学习网络对MPs的分类准确率可达85%,显著高于机器学习模型与常规1DCNN模型。Grad-CAM分析可清晰展示模型决策依据及误判原因。该方法在实际环境水样及混合样本中验证有效,具有较强抗干扰性能与实用性;所用基底材料来源广泛、制备工艺简便,具有成本优势与良好的应用潜力。 展开更多
关键词 表面增强拉曼光谱 微塑料 卷积神经网络 深度学习 梯度加权类激活映射
在线阅读 下载PDF
基于深度学习的癫痫脑电信号分类 被引量:2
18
作者 徐晴 葛成 +2 位作者 蔡标 陆翼 常珊 《数据采集与处理》 CSCD 北大核心 2022年第4期787-797,共11页
有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维... 有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维时间序列数据转换为二维图像,使用EfficientNetV2模型来实现癫痫检测的二分类。同时,引入梯度加权类激活映射(Gradient⁃weighted class activation mapping,Grad⁃CAM)对二维图像分类进行可视化分析。对德国伯恩大学脑电癫痫脑电信号数据集的预处理版本进行分类实验,EfficientNetV2模型的准确率达到了98.69%,优于BiLSTM模型。结果表明,EfficientNetV2模型可以有效通过二维脑电图像实现癫痫脑电分类,而且分类准确率更高。 展开更多
关键词 癫痫 脑电信号 EfficientNetV2 BiLSTM 梯度加权类激活映射
在线阅读 下载PDF
基于深层卷积随机配置网络的电熔镁炉工况识别方法研究 被引量:1
19
作者 李帷韬 童倩倩 +1 位作者 王殿辉 吴高昌 《自动化学报》 EI CAS CSCD 北大核心 2024年第3期527-543,共17页
为解决电熔镁炉工况识别模型泛化能力和可解释性弱的缺陷,提出一种基于深层卷积随机配置网络(Deep convolutional stochastic configuration networks,DCSCN)的可解释性电熔镁炉异常工况识别方法.首先,基于监督学习机制生成具有物理含... 为解决电熔镁炉工况识别模型泛化能力和可解释性弱的缺陷,提出一种基于深层卷积随机配置网络(Deep convolutional stochastic configuration networks,DCSCN)的可解释性电熔镁炉异常工况识别方法.首先,基于监督学习机制生成具有物理含义的高斯差分卷积核,采用增量式方法构建深层卷积神经网络(Deep convolutional neural network,DCNN),确保识别误差逐级收敛,避免反向传播算法迭代寻优卷积核参数的过程.定义通道特征图独立系数获取电熔镁炉特征类激活映射图的可视化结果,定义可解释性可信度评测指标,自适应调节深层卷积随机配置网络层级,对不可信样本进行再认知以获取最优工况识别结果.实验结果表明,所提方法较其他方法具有更优的识别精度和可解释性. 展开更多
关键词 电熔镁炉 深层卷积随机配置网络 高斯差分卷积核 类激活映射 可解释性
在线阅读 下载PDF
基于掩码一致性机制的弱监督图像语义分割研究 被引量:3
20
作者 胡捷 赵海涛 《应用光学》 CAS 北大核心 2024年第4期741-750,共10页
语义分割是一项广泛应用于无人驾驶、缺陷检测等场景的计算机视觉技术,但像素级的细粒度标注需要极大的标注成本,所以如何利用易获取的图像级标签进行弱监督语义分割是长期以来的研究重点。相较于仅依靠类激活映射图(class activation m... 语义分割是一项广泛应用于无人驾驶、缺陷检测等场景的计算机视觉技术,但像素级的细粒度标注需要极大的标注成本,所以如何利用易获取的图像级标签进行弱监督语义分割是长期以来的研究重点。相较于仅依靠类激活映射图(class activation maps,CAM)实现像素级分割,提出掩码一致性机制(masked consistency mechanism,MCM)来提供额外的监督信号,以此来缩小全监督和弱监督之间的差距。在全监督语义分割中,网络对图像每一块的掩码预测都具有一致的像素级分割监督,因此在ViT(vision transformer)中屏蔽掉一部分图像块,并要求仅依靠保留的图像块生成的类激活映射图与依靠完整图像生成的类激活映射图一致,以此为网络训练提供额外的自监督信号。在PASCAL VOC 2012和MS COCO上进行的实验表明,本文方法在使用相同监督水平的情况下优于最先进的方法。 展开更多
关键词 语义分割 弱监督 掩码一致性 类激活映射
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部