期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数据不平衡分布下燃气调压器故障识别方法
1
作者 尹孟伟 王勇 王超群 《振动.测试与诊断》 北大核心 2025年第2期346-353,415,共9页
针对燃气调压器故障识别中不平衡数据影响模型识别能力的问题,提出一种一维卷积神经网络(one-dimensional convolutional neural network,简称1D-CNN)与注意力机制(squeeze-and-excitation,简称SE)相结合的改进深度卷积神经网络(SE-1DC... 针对燃气调压器故障识别中不平衡数据影响模型识别能力的问题,提出一种一维卷积神经网络(one-dimensional convolutional neural network,简称1D-CNN)与注意力机制(squeeze-and-excitation,简称SE)相结合的改进深度卷积神经网络(SE-1DCNN)方法。首先,使用一维卷积核提取故障特征;其次,在交替的卷积层后添加SE模块用于通道加权,选择性地保留所需的重要信息特征,并抑制弱相关的特征;最后,使用类平衡损失函数代替交叉熵损失函数来抵消不平衡分布给网络造成的影响。实验结果表明,根据真实环境中采集的不平衡故障数据,所提改进模型与其他故障识别模型相比有更好的故障识别能力,准确率高达98.17%。 展开更多
关键词 故障识别 燃气调压器 类平衡损失函数 卷积神经网络 注意力机制
在线阅读 下载PDF
基于领域自适应的变工况轴承故障诊断 被引量:1
2
作者 曹洁 尹浩楠 +1 位作者 雷晓刚 王进花 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第8期2382-2390,共9页
针对轴承故障诊断中存在训练样本和测试样本分布不同及各类故障数据不平衡导致故障识别率低的问题,设计了一种基于改进残差网络(ResNet)的领域自适应故障诊断方法。在诊断网络第1层使用多维度卷积结构进行特征提取,得到不同维度的故障... 针对轴承故障诊断中存在训练样本和测试样本分布不同及各类故障数据不平衡导致故障识别率低的问题,设计了一种基于改进残差网络(ResNet)的领域自适应故障诊断方法。在诊断网络第1层使用多维度卷积结构进行特征提取,得到不同维度的故障特征信息;在领域自适应层采用局部最大平均差异(LMMD)对齐源域和目标域的分布,获取更多细粒度信息;使用类平衡损失函数(CBLoss)解决不平衡数据的训练问题,以Adam优化网络实现故障诊断。实验结果表明,所提方法可在故障样本类别不平衡下有较高的诊断结果。在2个轴承数据集和采集的风力发电机数据上进行实验验证,结果表明,所提方法具有一定的优越性,在数据样本不平衡情况下,诊断性能优于深度神经网络和领域自适应网络等深度迁移学习方法,可作为一种有效的跨工况故障分析方法。 展开更多
关键词 故障诊断 残差网络 数据不平衡 局部最大平均差异 类平衡损失函数 轴承
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部