期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于统计相关系数的数据离散化方法
被引量:
5
1
作者
解亚萍
《计算机应用》
CSCD
北大核心
2011年第5期1409-1412,共4页
很多数据挖掘方法只能处理离散值的属性,因此,连续属性必须进行离散化。提出一种统计相关系数的数据离散化方法,基于统计相关理论有效地捕获了类属性间的相互依赖,选取最佳断点。此外,将变精度粗糙集(VPRS)模型纳入离散化中,有效地控制...
很多数据挖掘方法只能处理离散值的属性,因此,连续属性必须进行离散化。提出一种统计相关系数的数据离散化方法,基于统计相关理论有效地捕获了类属性间的相互依赖,选取最佳断点。此外,将变精度粗糙集(VPRS)模型纳入离散化中,有效地控制数据的信息丢失。将所提方法在乳腺癌症诊断以及其他领域数据上进行了应用,实验结果表明,该方法显著地提高了See5决策树的分类学习精度。
展开更多
关键词
离散化
数据挖掘
类属性相互依赖
变精度粗糙集
决策树
在线阅读
下载PDF
职称材料
题名
基于统计相关系数的数据离散化方法
被引量:
5
1
作者
解亚萍
机构
兰州资源环境职业技术学院计算机中心
出处
《计算机应用》
CSCD
北大核心
2011年第5期1409-1412,共4页
文摘
很多数据挖掘方法只能处理离散值的属性,因此,连续属性必须进行离散化。提出一种统计相关系数的数据离散化方法,基于统计相关理论有效地捕获了类属性间的相互依赖,选取最佳断点。此外,将变精度粗糙集(VPRS)模型纳入离散化中,有效地控制数据的信息丢失。将所提方法在乳腺癌症诊断以及其他领域数据上进行了应用,实验结果表明,该方法显著地提高了See5决策树的分类学习精度。
关键词
离散化
数据挖掘
类属性相互依赖
变精度粗糙集
决策树
Keywords
discretization
data mining
Class-Attribute Interdependence(CAI)
Variable Precision Rough Set(VPRS)
decision tree
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于统计相关系数的数据离散化方法
解亚萍
《计算机应用》
CSCD
北大核心
2011
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部