期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TypeSampler:一种基于gossip的类型采样方法
1
作者 郑重 王意洁 +1 位作者 马行空 杨永滔 《软件学报》 EI CSCD 北大核心 2012年第7期1849-1868,共20页
在很多P2P应用中,节点可以根据其兴趣或资源划分为不同的类型,而以特定类型节点为目标的基于覆盖网的路由也就成为实现数据分发及查询的关键.非结构化覆盖网具有维护开销低、鲁棒性高的优点,却也因此难以保证路由效率.提出了一种基于gos... 在很多P2P应用中,节点可以根据其兴趣或资源划分为不同的类型,而以特定类型节点为目标的基于覆盖网的路由也就成为实现数据分发及查询的关键.非结构化覆盖网具有维护开销低、鲁棒性高的优点,却也因此难以保证路由效率.提出了一种基于gossip的类型采样方法——TypeSampler,它以等概率采样不同类型的节点(称为类型采样),以此保证在任意节点发现特定类型邻居节点的概率下界,进而保证非结构化覆盖网中的路由效率.为了实现类型采样,TypeSampler首先通过基于gossip的节点采样及反熵聚集估计各类型节点的比例,然后,TypeSampler再根据这些比例估计值周期性地维护每个节点的类型采样表.理论分析与实验结果表明,TypeSampler能够实现精确的类型比例估计以及近似均匀随机的类型采样,并能适应动态的网络环境.而且相对于已有的方法,TypeSampler能够支持更高效的路由,且具有更好的可扩展性. 展开更多
关键词 类型采样 比例估计 路由 非结构化覆盖网 P2P
在线阅读 下载PDF
Machine learning strategies for lithostratigraphic classification based on geochemical sampling data: A case study in area of Chahanwusu River, Qinghai Province, China 被引量:7
2
作者 ZHANG Bao-yi LI Man-yi +4 位作者 LI Wei-xia JIANG Zheng-wen Umair KHAN WANG Li-fang WANG Fan-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1422-1447,共26页
Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four mach... Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification. 展开更多
关键词 machine learning geochemical sampling lithostratigraphic classification lithostratigraphic prediction BEDROCK
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部