期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合表示学习和迁移学习的跨领域情感分类 被引量:9
1
作者 廖祥文 吴晓静 +2 位作者 桂林 黄锦辉 陈国龙 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第1期37-46,共10页
针对现有跨领域情感分类方法中文本表示特征忽略了重要单词与句子的情感信息,且在迁移过程中存在负面迁移的问题,提出一种将文本表示学习与迁移学习算法相结合的跨领域情感分类方法。首先,利用低维稠密的词向量对文本进行初始化,通过分... 针对现有跨领域情感分类方法中文本表示特征忽略了重要单词与句子的情感信息,且在迁移过程中存在负面迁移的问题,提出一种将文本表示学习与迁移学习算法相结合的跨领域情感分类方法。首先,利用低维稠密的词向量对文本进行初始化,通过分层注意力网络,对文本中重要单词与句子的情感信息进行建模,从而学习源领域与目标领域的文档级分布式表示。随后,采用类噪声估计方法,对源领域中的迁移数据进行检测,剔除负面迁移样例,挑选高质量样例来扩充目标领域的训练集。最后,训练支持向量机对目标领域文本进行情感分类。在大规模公开数据集上进行的两个实验结果表明,与基准方法相比,所提方法的均方根误差分别降低1.5%和1.0%,说明该方法可以有效地提高跨领域情感分类性能。 展开更多
关键词 文本表示学习 迁移学习 类噪声估计 跨领域 情感分
在线阅读 下载PDF
Improved speech absence probability estimation based on environmental noise classification 被引量:2
2
作者 SON Young-ho LEE Sang-min 《Journal of Central South University》 SCIE EI CAS 2012年第9期2548-2553,共6页
An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking met... An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking method,requires seeking the "a priori" probability of speech absence that is derived by applying microphone input signal and the noise signal based on the estimated value of the "a posteriori" signal-to-noise ratio(SNR).To overcome this problem,first,the optimal values in terms of the perceived speech quality of a variety of noise types are derived.Second,the estimated optimal values are assigned according to the determined noise type which is classified by a real-time noise classification algorithm based on the Gaussian mixture model(GMM).The proposed algorithm estimates the speech absence probability using a noise classification algorithm which is based on GMM to apply the optimal parameter of each noise type,unlike the conventional approach which uses a fixed threshold and smoothing parameter.The performance of the proposed method was evaluated by objective tests,such as the perceptual evaluation of speech quality(PESQ) and composite measure.Performance was then evaluated by a subjective test,namely,mean opinion scores(MOS) under various noise environments.The proposed method show better results than existing methods. 展开更多
关键词 speech enhancement soft decision speech absence probability Gaussian mixture model (GMM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部