期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
文本分类中基于概率主题模型的噪声处理方法 被引量:9
1
作者 林洋港 陈恩红 《计算机工程与科学》 CSCD 北大核心 2010年第7期89-92,119,共5页
训练集中文本质量的好坏直接决定着文本分类的结果。实际应用中训练集的构建不可避免地会产生噪声样本,从而影响文本分类方法的实际应用效果。为此,针对文本分类中的噪声问题,本文提出一种基于概率主题模型的噪声处理方法,首先对训练集... 训练集中文本质量的好坏直接决定着文本分类的结果。实际应用中训练集的构建不可避免地会产生噪声样本,从而影响文本分类方法的实际应用效果。为此,针对文本分类中的噪声问题,本文提出一种基于概率主题模型的噪声处理方法,首先对训练集中的每个样本计算其类别熵,根据类别熵对噪声样本进行过滤;然后利用主题模型进行数据平滑,进一步减弱噪声样本的影响。这种方法不但能够减弱噪声样本对分类结果的影响,同时还保持了训练集的原有规模。在真实数据上的实验表明,该方法对噪声样本的分布具有较好的鲁棒性,在噪声比例较大的情况下仍能保持较好的分类结果。 展开更多
关键词 噪声数据 文本分类 概率主题模型 类别熵
在线阅读 下载PDF
面向螺丝锁附序列的多分辨率融合卷积神经网络 被引量:1
2
作者 刘天宇 周稻祥 +1 位作者 李明 李心宇 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第3期161-168,178,共9页
为了准确识别螺丝锁附是否发生故障和具体故障类型,提出了一种多分辨率融合卷积神经网络。使用原始序列数据作为输入以提高识别速度和精度;为了提取多尺度特征,分别在分辨率(数据长度)为4 000、2 000和1 000的特征向量上进行一维卷积运... 为了准确识别螺丝锁附是否发生故障和具体故障类型,提出了一种多分辨率融合卷积神经网络。使用原始序列数据作为输入以提高识别速度和精度;为了提取多尺度特征,分别在分辨率(数据长度)为4 000、2 000和1 000的特征向量上进行一维卷积运算;在Fusion层通过上采样、下采样和1×1卷积等策略,将各分辨率特征向量融合得到3组新特征向量,使得该网络能够获得锁附序列的整体和局部特征信息;在输出层使用类别加权交叉熵(CWCE)损失,通过为损失函数设置惩罚系数来加大对样本较少类别的惩罚力度,缓解了各类别数据不平衡的问题。收集了3 149条螺丝锁附序列,并在该数据集上进行了实验,结果表明:在6分类实验中,所提方法的准确率为96.00%,宏F1为93.93%,均高于其他方法;在2分类实验中,所提方法的准确率为99.36%,CWCE损失的有效性得到了验证;所提方法能够有效地判别锁附故障,并具有较好的实时性。 展开更多
关键词 螺丝 锁附故障 多分辨率融合 卷积神经网络 类别加权交叉
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部