期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
降低特征类内离散度的JPEG图像隐写分析 被引量:1
1
作者 汪然 牛少彰 +2 位作者 平西建 张涛 桑晓丹 《应用科学学报》 CAS CSCD 北大核心 2019年第1期41-50,共10页
图像内容特征差异使得载体、载密图像的隐写检测特征混淆在一起而难以区分,这导致图像隐写分析成了一个"类内分散、类间聚合"的分类问题.针对此问题,从降低因图像内容、处理手段等造成的隐写检测特征类内离散度的角度出发,提... 图像内容特征差异使得载体、载密图像的隐写检测特征混淆在一起而难以区分,这导致图像隐写分析成了一个"类内分散、类间聚合"的分类问题.针对此问题,从降低因图像内容、处理手段等造成的隐写检测特征类内离散度的角度出发,提出了一种更加可靠的隐写检测模型.依据内容复杂度将待检测图像分类,分别提取具有相同内容复杂度的每一类图像的隐写检测特征和训练分类器,得到最终检测结果.数据分析和实验结果表明:基于图像分类的隐写分析方法能够有效提高检测性能. 展开更多
关键词 隐写分析 图像分 图像内容复杂 内离散
在线阅读 下载PDF
基于最大散度差的保序分类算法
2
作者 郝伟 刘忠宝 《西安石油大学学报(自然科学版)》 CAS 北大核心 2017年第4期123-126,共4页
分类算法主要存在问题:(1)无法充分利用样本的分布特征;(2)无法保持样本的相对关系不变;(3)无法解决大规模分类问题。对此,提出了一种基于最大散度差的保序分类算法RPCM,该方法利用线性判别分析算法中的类间离散度和类内离散度来表征样... 分类算法主要存在问题:(1)无法充分利用样本的分布特征;(2)无法保持样本的相对关系不变;(3)无法解决大规模分类问题。对此,提出了一种基于最大散度差的保序分类算法RPCM,该方法利用线性判别分析算法中的类间离散度和类内离散度来表征样本的分布特征,通过保持各类样本中心相对关系不变来实现样本相对关系不变。理论分析表明:RPCM的对偶形式与最小包含球等价。在核心向量机的基础上提出了RPCM-CVM算法,该算法可用来解决大规模分类问题,标准数据集上的比较实验验证了所提方法的有效性。 展开更多
关键词 最大散 保序分 离散 内离散
在线阅读 下载PDF
基于改进KMOR的聚类算法 被引量:3
3
作者 刘撼坤 李晶 范九伦 《计算机工程与设计》 北大核心 2019年第11期3158-3163,共6页
为避免KMOR(k-means with outlier removal)算法因样本中类内离散度不同而产生离群点误判的问题,提出为每类样本分别选取离群点判别标准的改进算法。在算法初始化时,利用样本的密集性排除离群点干扰;在迭代过程中,根据每类样本的类内离... 为避免KMOR(k-means with outlier removal)算法因样本中类内离散度不同而产生离群点误判的问题,提出为每类样本分别选取离群点判别标准的改进算法。在算法初始化时,利用样本的密集性排除离群点干扰;在迭代过程中,根据每类样本的类内离散度分别选取判别标准,与样本到其所属聚类中心的距离比较判别离群点。两者结合提高聚类结果正确率,避免因样本中类内离散度不同产生的误判。实验结果表明,改进算法相比原算法在正确率和离群点检测上有所提高。 展开更多
关键词 K均值 初始化 离群点检测 内离散
在线阅读 下载PDF
面向无线传感网络的涉密信息安全动态预警方法 被引量:2
4
作者 沈伍强 梁哲恒 +2 位作者 张金波 沈桂泉 伍江瑶 《传感技术学报》 CSCD 北大核心 2024年第12期2148-2152,共5页
无线传感网络采用分布式控制方法,静态安全机制无法适应动态环境下的安全需求,并且无法实时响应安全威胁。为此,提出一种面向无线传感网络的涉密信息安全动态预警方法。利用二进制算法选取传感网络节点中的历史特征信息子集并对其进行编... 无线传感网络采用分布式控制方法,静态安全机制无法适应动态环境下的安全需求,并且无法实时响应安全威胁。为此,提出一种面向无线传感网络的涉密信息安全动态预警方法。利用二进制算法选取传感网络节点中的历史特征信息子集并对其进行编码,根据类内离散度和类间离散度的比值,选择不变的历史入侵信息传感数据特征。将入侵信息预设为动态观测序列,利用前向算法计算出无线传感网络所处的安全状态值,结合该值完成安全性动态预警。仿真结果表明,所提方法的数据篡改捕获率始终在97%以上、平均绝对误差及相对均方误差低于0.35、均方根误差小于1.35,能够有效动态预警,保护无线传感网络安全。 展开更多
关键词 无线传感网络 涉密信息动态预警 前向算法 内离散 离散 历史入侵信息 异常链路
在线阅读 下载PDF
基于细菌群体趋药性优化的k-means算法 被引量:3
5
作者 于来行 张敏 葛斌 《计算机工程与设计》 CSCD 北大核心 2009年第7期1725-1727,1737,共4页
细菌趋药性算法是一种新的仿生进化算法,针对细菌趋药性算法,介绍了其基本原理,讨论了一种改进的算法——细菌群体趋药性(BCC)算法。将细菌群体趋药性优化方法应用在k-means聚类分析中,以类内离散度和为目标函数,建立了BCC优化的k-mean... 细菌趋药性算法是一种新的仿生进化算法,针对细菌趋药性算法,介绍了其基本原理,讨论了一种改进的算法——细菌群体趋药性(BCC)算法。将细菌群体趋药性优化方法应用在k-means聚类分析中,以类内离散度和为目标函数,建立了BCC优化的k-means算法模型,利用BCC算法的全局搜索能力,很大程度上避免了k-means算法易陷入局部极小的缺陷,同时也降低了算法对初始值的敏感度。并给出了一些实验,结果令人满意。 展开更多
关键词 细菌趋药性算法 细菌群体趋药性 K-MEANS算法 算法 类内离散度和
在线阅读 下载PDF
改进的Otsu算法在图像分割中的应用 被引量:110
6
作者 胡敏 李梅 汪荣贵 《电子测量与仪器学报》 CSCD 2010年第5期443-449,共7页
针对二维Otsu自适应阈值算法计算复杂度高的问题,提出一种新的快速有效的Otsu图像分割改进算法。该算法通过求两个一维Otsu法的阈值来代替传统的二维Otsu法的分割阈值,使得分割的计算复杂度从O(L4)降到O(L)。为保证分割对象的完整性,算... 针对二维Otsu自适应阈值算法计算复杂度高的问题,提出一种新的快速有效的Otsu图像分割改进算法。该算法通过求两个一维Otsu法的阈值来代替传统的二维Otsu法的分割阈值,使得分割的计算复杂度从O(L4)降到O(L)。为保证分割对象的完整性,算法引入类内最小离散度的概念,并通过遗传算法实现对参数的自动优化。理论分析和实验结果表明本算法计算速度不仅优于原二维Otsu算法,而且分割效果较好。 展开更多
关键词 图像分割 二维直方图 OTSU算法 内离散 遗传算法
在线阅读 下载PDF
一种改进的线性判别分析法在人脸识别中的应用 被引量:12
7
作者 覃志祥 丁立新 +2 位作者 简国强 秦前清 李元香 《计算机工程》 EI CAS CSCD 北大核心 2006年第4期211-213,共3页
提出了一种新的基于LDA的人脸识别算法。该方法重新定义了样本的类间散布矩阵,在原始的定义基础上增加了一种径向基函数(RBF)调节类间距离,使得在选择投影方向时能更好地分开各类样本;同时该方法在类间散布矩阵与类内散布矩阵的特征分... 提出了一种新的基于LDA的人脸识别算法。该方法重新定义了样本的类间散布矩阵,在原始的定义基础上增加了一种径向基函数(RBF)调节类间距离,使得在选择投影方向时能更好地分开各类样本;同时该方法在类间散布矩阵与类内散布矩阵的特征分解的基础上,通过变换求出符合Fisher准则的最优投影方向,可以证明这样得到的投影方向同时具有正交性与统计不相关性。通过ORL人脸数据库的数值实验,表明了该算法比传统算法有更好的性能。 展开更多
关键词 线性判别分析 样本离散 样本内离散 特征提取 人脸识别
在线阅读 下载PDF
基于优化的LDA算法人脸识别研究 被引量:26
8
作者 庄哲民 张阿妞 李芬兰 《电子与信息学报》 EI CSCD 北大核心 2007年第9期2047-2049,共3页
提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩... 提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。 展开更多
关键词 线性判别分析(LDA) 人脸识别 离散 内离散 特征提取
在线阅读 下载PDF
利用标准化LDA进行人脸识别 被引量:22
9
作者 余冰 金连甫 陈平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第3期302-306,共5页
线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变... 线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变权函数 ,使得在选择投影方向时 ,能够更好地分开各个类的样本 ;同时 ,它采用一种合理而有效的方法解决矩阵奇异的问题 ,即保留样本类内离散度矩阵的零空间 ,因为这个空间包含了最具有判别能力的信息 在这个零空间里 ,寻找对应于样本类间离散度矩阵的较大特征值的特征向量作为最后降维的转换矩阵 实验结果显示 ,在人脸识别中 ,与传统LDA方法相比 ,该方法有更好的识别率 展开更多
关键词 线性判别分析(LDA) 样本离散 样本内离散 小样本集合问题 边缘
在线阅读 下载PDF
一种改进的特征权重算法 被引量:20
10
作者 张瑜 张德贤 《计算机工程》 CAS CSCD 北大核心 2011年第5期210-212,共3页
特征权重算法对文本分类系统的精确度有很大影响,传统的TFIDF算法未能考虑特征项在类间和类内的分布情况。为此,在对传统算法和相关改进算法进行分析的基础上,引入类间偏斜度、类内离散度和权重调整因子的改进思路,提出一种基于WA-DI-S... 特征权重算法对文本分类系统的精确度有很大影响,传统的TFIDF算法未能考虑特征项在类间和类内的分布情况。为此,在对传统算法和相关改进算法进行分析的基础上,引入类间偏斜度、类内离散度和权重调整因子的改进思路,提出一种基于WA-DI-SI的特征权重改进算法,分别采用支持向量机和朴素贝叶斯2种分类算法进行测试。测试结果表明,与其他改进算法相比,该算法能够获得更好的分类效果。 展开更多
关键词 文本分 特征权重 间偏斜 内离散 权重调整因子
在线阅读 下载PDF
改进的线性判别分析算法 被引量:11
11
作者 刘忠宝 王士同 《计算机应用》 CSCD 北大核心 2011年第1期250-253,共4页
线性判别分析是一种有效的特征提取方法,但其存在两个缺陷:小样本问题和秩限制问题。为了解决上述问题,提出一种改进的线性判别分析算法ILDA。该方法引进类间离散度标量和类内离散度标量,通过求解样本各维的权值达到特征提取的目的。若... 线性判别分析是一种有效的特征提取方法,但其存在两个缺陷:小样本问题和秩限制问题。为了解决上述问题,提出一种改进的线性判别分析算法ILDA。该方法引进类间离散度标量和类内离散度标量,通过求解样本各维的权值达到特征提取的目的。若干标准人脸数据集和人工数据集上的实验表明ILDA在特征提取方面的有效性。 展开更多
关键词 特征提取 线性判别分析 离散标量 内离散标量
在线阅读 下载PDF
基于对称线性判别分析算法的人脸识别 被引量:4
12
作者 王伟 张明 《计算机应用》 CSCD 北大核心 2009年第12期3352-3353,3356,共3页
小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在... 小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在ORL和Yale标准人脸库上的实验结果表明,人脸识别效果优于传统LDA方法、独立成分分析(ICA)方法以及二维对称主成分分析(2DSPCA)方法。 展开更多
关键词 线性判别分析 小样本问题 镜像图像 零空间 离散 内离散
在线阅读 下载PDF
利用Mahalanobis距离进行人脸表情的识别 被引量:2
13
作者 屈志毅 黄鹤鸣 孔令旺 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期66-68,共3页
提出了利用Mahalanobis距离进行人脸表情识别的方法.首先将待分类的图像样本集进行坐 标变换,使得变换以后类间离散度尽可能大而类内离散度尽可能小,即使变换以后的Fisher准则函数 取得极大值,在新的坐标下求每个待分类样本到各类均值... 提出了利用Mahalanobis距离进行人脸表情识别的方法.首先将待分类的图像样本集进行坐 标变换,使得变换以后类间离散度尽可能大而类内离散度尽可能小,即使变换以后的Fisher准则函数 取得极大值,在新的坐标下求每个待分类样本到各类均值向量的Mahalanobis距离,从而将待分类的 样本归到Mahalanobis距离最小的类中去,通过实验得到了平均80.25%的识别率. 展开更多
关键词 人脸表情识别 MAHALANOBIS距离 内离散距阵 离散距阵 FISHER准则
在线阅读 下载PDF
一种改进的线性判别分析算法MLDA 被引量:3
14
作者 刘忠宝 王士同 《计算机科学》 CSCD 北大核心 2010年第11期239-242,共4页
线性判别分析(LDA)是模式识别方法之一,已广泛应用于模式识别、数据分析等诸多领域。线性判别分析法寻找的是有效分类的方向。而当样本维数远大于样本个数(即小样本问题)时,LDA便束手无策。为有效解决线性判别分析法的小样本问题,提出... 线性判别分析(LDA)是模式识别方法之一,已广泛应用于模式识别、数据分析等诸多领域。线性判别分析法寻找的是有效分类的方向。而当样本维数远大于样本个数(即小样本问题)时,LDA便束手无策。为有效解决线性判别分析法的小样本问题,提出了一种改进的LDA算法——MLDA。该算法将类内离散度矩阵进行标量化处理,有效地避免了对类内离散度矩阵求逆。通过实验证明MLDA在一定程度上解决了经典LDA的小样本问题。 展开更多
关键词 特征提取 线性判别分析(LDA) 小样本问题 离散矩阵 内离散矩阵 标量化
在线阅读 下载PDF
改进的LDA算法及秩限制问题研究 被引量:3
15
作者 刘忠宝 王士同 《计算机工程与应用》 CSCD 北大核心 2010年第32期17-20,共4页
针对经典线性判别分析中存在的秩限制和小样本问题,通过改进原有的Fisher准则,提出了一种改进的线性判别分析算法ILDA,以克服秩限制问题并同时解决了小样本问题。重点研究了ILDA在解决样本类间离散度矩阵秩限制方面的有效性。在多个国... 针对经典线性判别分析中存在的秩限制和小样本问题,通过改进原有的Fisher准则,提出了一种改进的线性判别分析算法ILDA,以克服秩限制问题并同时解决了小样本问题。重点研究了ILDA在解决样本类间离散度矩阵秩限制方面的有效性。在多个国际标准数据集和人工数据集上实验的结果表明ILDA算法不仅有效地突破了秩限制,达到提取更多判别特征的目的,而且具有良好的识别效果。 展开更多
关键词 线性判别分析 离散矩阵 内离散矩阵 秩限制问题
在线阅读 下载PDF
多阶矩阵组合LDA及其在人脸识别中的应用 被引量:3
16
作者 刘忠宝 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第12期152-155,共4页
线性判别分析(LDA)是一种普遍用于特征提取的线性分类方法。但将LDA直接用于人脸识别会遇到小样本问题和秩限制问题。为了解决以上问题,提出一种基于多阶矩阵组合的LDA算法——MLDA。该算法重新定义了传统LDA中的类内离散度矩阵Sw,使传... 线性判别分析(LDA)是一种普遍用于特征提取的线性分类方法。但将LDA直接用于人脸识别会遇到小样本问题和秩限制问题。为了解决以上问题,提出一种基于多阶矩阵组合的LDA算法——MLDA。该算法重新定义了传统LDA中的类内离散度矩阵Sw,使传统Fisher准则具有更好的健壮性和适应性。若干人脸数据库上的比较实验证明了MLDA的有效性。 展开更多
关键词 线性判别分析(LDA) 内离散矩阵 多阶矩阵组合 人脸识别
在线阅读 下载PDF
一种改进的线性判别分析算法在人脸识别中的应用 被引量:6
17
作者 刘忠宝 《计算机工程与科学》 CSCD 北大核心 2011年第7期89-93,共5页
线性判别分析算法是一种经典的特征提取方法,但其仅在大样本情况下适用。本文针对传统线性判别分析算法面临的小样本问题和秩限制问题,提出了一种改进的线性判别分析算法ILDA。该方法在矩阵指数的基础上,重新定义了类内离散度矩阵和类... 线性判别分析算法是一种经典的特征提取方法,但其仅在大样本情况下适用。本文针对传统线性判别分析算法面临的小样本问题和秩限制问题,提出了一种改进的线性判别分析算法ILDA。该方法在矩阵指数的基础上,重新定义了类内离散度矩阵和类间离散度矩阵,有效地同时提取类内离散度矩阵零空间和非零空间中的信息。若干人脸数据库上的比较实验表明了ILDA在人脸识别方面的有效性。 展开更多
关键词 线性判别分析 内离散矩阵 离散矩阵 人脸识别
在线阅读 下载PDF
引入结构信息的模糊支持向量机
18
作者 李凯 顾丽凤 张雷 《河北大学学报(自然科学版)》 CAS 北大核心 2017年第2期187-193,共7页
模糊支持向量机是在支持向量机的基础上,通过考虑不同样本对支持向量机的作用而提出的一种分类方法,然而,该方法却忽视了给定样本集的结构信息.为此,将样本集中的结构信息引入到模糊支持向量机中,给出了一种结构型模糊支持向量机模型,... 模糊支持向量机是在支持向量机的基础上,通过考虑不同样本对支持向量机的作用而提出的一种分类方法,然而,该方法却忽视了给定样本集的结构信息.为此,将样本集中的结构信息引入到模糊支持向量机中,给出了一种结构型模糊支持向量机模型,利用拉格朗日求解方法,将其转换为一个具有约束条件的优化问题,通过求解该对偶问题,获得了结构型模糊支持向量机分类器.实验中选取标准数据集,验证了提出方法的有效性. 展开更多
关键词 支持向量机 模糊支持向量机 结构信息 内离散
在线阅读 下载PDF
融合数据分布特征的保序学习机
19
作者 刘忠宝 张志剑 党建飞 《数据采集与处理》 CSCD 北大核心 2020年第3期431-440,共10页
支持向量机(Support vector machine,SVM)作为一种经典的分类方法,已经广泛应用于各种领域中。然而,标准支持向量机在分类决策中面临以下问题:(1)未考虑分类数据的分布特征;(2)忽略了样本类别间的相对关系;(3)无法解决大规模分类问题。... 支持向量机(Support vector machine,SVM)作为一种经典的分类方法,已经广泛应用于各种领域中。然而,标准支持向量机在分类决策中面临以下问题:(1)未考虑分类数据的分布特征;(2)忽略了样本类别间的相对关系;(3)无法解决大规模分类问题。鉴于此,提出融合数据分布特征的保序学习机(Rank preservation learning machine based on data distribution fusion,RPLM-DDF)。该方法通过引入类内离散度表征数据的分布特征;通过各类样本数据中心位置相对不变保证全局样本顺序不变;通过建立所提方法和核心向量机对偶形式的等价性解决了大规模分类问题。在人工数据集、中小规模数据集和大规模数据集上的比较实验验证所提方法的有效性。 展开更多
关键词 内离散 支持向量机 大规模数据集 全局保序 核心向量机
在线阅读 下载PDF
一种基于最少出现文档频的文本特征提取方法 被引量:6
20
作者 苏丹 周明全 +1 位作者 王学松 任玉芝 《计算机工程与应用》 CSCD 2012年第10期164-166,178,共4页
传统特征提取改进方法在特征分布信息的量化方面存在不足,很大程度上影响了其分类效能。针对这一问题,提出一种基于最少出现文档频的特征提取改进方法,即TF-LDF算法。该算法用最少出现文档频来量化特征类间集中度与类内离散度,能够更加... 传统特征提取改进方法在特征分布信息的量化方面存在不足,很大程度上影响了其分类效能。针对这一问题,提出一种基于最少出现文档频的特征提取改进方法,即TF-LDF算法。该算法用最少出现文档频来量化特征类间集中度与类内离散度,能够更加准确地反映特征分布情况。通过实验结果比较,可以证明TF-LDF算法分类效果更佳。 展开更多
关键词 特征提取 特征分布 间集中 内离散 文档-最少出现文档频率(TF-LDF)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部