期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
类不均衡的半监督高斯过程分类算法 被引量:18
1
作者 夏战国 夏士雄 +1 位作者 蔡世玉 万玲 《通信学报》 EI CSCD 北大核心 2013年第5期42-51,共10页
针对传统的监督学习方法难以解决真实数据集标记信息少、训练样本集中存在类不均衡的问题,提出了类不均衡的半监督高斯过程分类算法。算法引入自训练的半监督学习思想,结合高斯过程分类算法计算后验概率,向未标记数据中注入类标记以获... 针对传统的监督学习方法难以解决真实数据集标记信息少、训练样本集中存在类不均衡的问题,提出了类不均衡的半监督高斯过程分类算法。算法引入自训练的半监督学习思想,结合高斯过程分类算法计算后验概率,向未标记数据中注入类标记以获得更多准确可信的标记数据,使得训练样本的类分布相对平衡,分类器自适应优化以获得较好的分类效果。实验结果表明,在类不均衡的训练样本及标记信息过少的情况下,该算法通过自训练分类器获得了有效标记,使分类精度得到了有效提高,为解决类不均衡数据分类提供了一个新的思路。 展开更多
关键词 类不均衡 半监督 高斯过程分 自训练
在线阅读 下载PDF
面向多类不均衡网络流量的特征选择方法 被引量:9
2
作者 孙兴斌 孙彦赞 +1 位作者 郑小盈 芮赟 《计算机应用研究》 CSCD 北大核心 2017年第2期568-571,594,共5页
针对网络流量分类中的多类不均衡问题,提出一种基于相对不确定性和对称不确定性的Hybrid型特征选择方法。首先,利用相对不确定性为每个类选择候选特征集;然后,保留每个候选特征集中对称不确定性较高的特征并去除其他特征;最后,利用基于C... 针对网络流量分类中的多类不均衡问题,提出一种基于相对不确定性和对称不确定性的Hybrid型特征选择方法。首先,利用相对不确定性为每个类选择候选特征集;然后,保留每个候选特征集中对称不确定性较高的特征并去除其他特征;最后,利用基于C4.5决策树的wrapper型特征选择方法确定最优特征子集。在真实网络流量数据集上的实验结果表明,与传统方法相比,该方法具有较高的整体准确率、小类召回率和g-mean值,从而可以减轻多类不均衡问题带来的不良影响。 展开更多
关键词 网络流量 类不均衡 特征选择 相对不确定性 对称不确定性
在线阅读 下载PDF
一种基于不均衡数据的网络入侵流量分类方法 被引量:5
3
作者 关晓惠 钱亚冠 《电信科学》 北大核心 2015年第6期89-95,共7页
在网络入侵流量检测中,普遍存在不同攻击类型的流量分布不均现象,导致少数攻击流量类识别率较低。为解决此类问题,基于不同特征空间的分类器流水线组合方法将多分类问题转化为不同特征空间上的两分类问题,有效地实现少数类重抽样和特征... 在网络入侵流量检测中,普遍存在不同攻击类型的流量分布不均现象,导致少数攻击流量类识别率较低。为解决此类问题,基于不同特征空间的分类器流水线组合方法将多分类问题转化为不同特征空间上的两分类问题,有效地实现少数类重抽样和特征空间的优化,避免了少数类受多数类特征的干扰。实验表明,此方法可以有效地提高攻击流量中少数类的分类精度和召回率。 展开更多
关键词 攻击流量 类不均衡 器流水线组合
在线阅读 下载PDF
价值样本选取的不均衡分类 被引量:5
4
作者 徐剑 王馨月 +2 位作者 才子昕 沈启航 景丽萍 《计算机科学与探索》 CSCD 北大核心 2020年第3期401-409,共9页
基于传统模型的实际分类问题,不均衡分类是一个常见的挑战问题。由于传统分类器较难学习少数类数据集内部的本质结构,导致更多地偏向于多数类,从而使少数类样本被误分为多数类样本。与此同时,样本集中的冗余数据和噪音数据也会对分类器... 基于传统模型的实际分类问题,不均衡分类是一个常见的挑战问题。由于传统分类器较难学习少数类数据集内部的本质结构,导致更多地偏向于多数类,从而使少数类样本被误分为多数类样本。与此同时,样本集中的冗余数据和噪音数据也会对分类器造成困扰。为有效处理上述问题,提出一种新的不均衡分类框架SSIC,该框架充分考虑数据统计特性,自适应从大小类中选取有价值样本,并结合代价敏感学习构建不均衡数据分类器。首先,SSIC通过组合部分多数类实例和所有少数类实例来构造几个平衡的数据子集。在每个子集上,SSIC充分利用数据的特征来提取可区分的高级特征并自适应地选择重要样本,从而可以去除冗余噪声数据。其次,SSIC通过在每个样本上自动分配适当的权重来引入一种代价敏感的支持向量机(SVM),以便将少数类视为与多数类相等。 展开更多
关键词 不均学习 压缩激励网络 代价敏感度学习
在线阅读 下载PDF
分类中的类重叠问题及其处理方法研究 被引量:9
5
作者 熊海涛 吴俊杰 +1 位作者 刘洪甫 刘鲁 《管理科学学报》 CSSCI 北大核心 2013年第4期8-21,共14页
类重叠问题是数据挖掘与机器学习领域的瓶颈问题之一.如果其中还存在类不均衡问题时,情况变得更加复杂.有鉴于此,本文在已有文献基础上归纳了三种类重叠学习算法及提出一种新的方法:分隔法,并首次将支持向量数据描述算法用于实际数据的... 类重叠问题是数据挖掘与机器学习领域的瓶颈问题之一.如果其中还存在类不均衡问题时,情况变得更加复杂.有鉴于此,本文在已有文献基础上归纳了三种类重叠学习算法及提出一种新的方法:分隔法,并首次将支持向量数据描述算法用于实际数据的重叠样本识别,对类重叠问题及其与类不均衡问题的相互影响进行了系统研究.在真实数据上采用五种分类器的实验结果表明:1)多数情况下"分隔法"是表现最佳的类重叠学习算法;2)分隔法通常对基于分界面而非规则的分类器更为有效;3)分隔法在类不均衡问题中表现很好,当基础分类器为支持向量机时尤为突出.最后针对支持向量机的实验结果给出了理论分析. 展开更多
关键词 数据挖掘 重叠 类不均衡 支持向量数据描述
在线阅读 下载PDF
基于可靠性的鲁棒模糊聚类 被引量:6
6
作者 潘金艳 高朋 +2 位作者 高云龙 谢有为 熊裕慧 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第4期516-528,共13页
相比于k-means算法,模糊C均值(FCM)通过引入模糊隶属度,考虑不同数据簇之间的相互作用,进而避免了聚类中心趋同性问题.然而模糊隶属度具有拖尾和翘尾的结构特征,因此使得FCM算法对噪声点和孤立点很敏感;此外,由于FCM算法倾向于将各数据... 相比于k-means算法,模糊C均值(FCM)通过引入模糊隶属度,考虑不同数据簇之间的相互作用,进而避免了聚类中心趋同性问题.然而模糊隶属度具有拖尾和翘尾的结构特征,因此使得FCM算法对噪声点和孤立点很敏感;此外,由于FCM算法倾向于将各数据簇均等分,因此算法对数据簇大小也很敏感,对非平衡数据簇聚类效果不佳.针对这些问题,本文提出了基于可靠性的鲁棒模糊聚类算法(RRFCM).该算法基于当前的聚类结果,对样本点进行可靠性分析,利用样本点的可靠性和局部近邻信息,突出不同数据簇之间的可分性,从而提高了算法对噪声的鲁棒性,并且降低了对非平衡数据簇大小的敏感性,得到了泛化性能更好的聚类结果.与相关算法进行对比,RRFCM算法在人造数据集,UCI真实数据集以及图像分割实验中均取得最优的结果. 展开更多
关键词 模糊C均值(FCM) 类不均衡 集成学习 k近邻约束 局部信息
在线阅读 下载PDF
一种基于统计频率的网络流量特征选择方法 被引量:3
7
作者 孙兴斌 芮赟 《小型微型计算机系统》 CSCD 北大核心 2016年第11期2483-2487,共5页
在对多类不均衡的网络流量进行分类时,基于机器学习的分类模型倾向于多数类,导致少数类召回率较低.针对该问题,提出一种基于统计频率的特征选择方法.该方法首先根据样本的统计频率计算出度量每个特征区分能力的特征选择系数,然后根据特... 在对多类不均衡的网络流量进行分类时,基于机器学习的分类模型倾向于多数类,导致少数类召回率较低.针对该问题,提出一种基于统计频率的特征选择方法.该方法首先根据样本的统计频率计算出度量每个特征区分能力的特征选择系数,然后根据特征选择系数构建特征选择矩阵,最后为每个类选择与之相关性较强的特征.在实验阶段,使用该方法选择的特征对多类不均衡的网络流量进行分类获得了较高的整体准确率、少数类召回率和g-mean值,证明该方法可以减轻多类不均衡问题带来的不良影响. 展开更多
关键词 网络流量分 类不均衡 统计频率 特征选择
在线阅读 下载PDF
基于Transformer的多标签工业故障诊断方法研究 被引量:4
8
作者 火久元 李超杰 于春潇 《振动与冲击》 EI CSCD 北大核心 2023年第18期88-99,189,共13页
工业故障数据的多维性、类不均衡性和并发性为工业故障诊断带来了三大挑战:一是从多维传感器数据中提取故障特征过度依赖于专家知识;二是不同类型故障样本之间的极端类不均衡性严重限制了分类器的性能;三是多个类型的故障可能同时发生... 工业故障数据的多维性、类不均衡性和并发性为工业故障诊断带来了三大挑战:一是从多维传感器数据中提取故障特征过度依赖于专家知识;二是不同类型故障样本之间的极端类不均衡性严重限制了分类器的性能;三是多个类型的故障可能同时发生增加了故障诊断问题的复杂性。为了应对这些挑战,提出了一种基于多重自注意力机制改进的Transformer多标签故障诊断模型。结合自适应合成采样(adaptive synthetic sampling,ADASYN)和Borderline-SMOTE1组合过采样方法,充分利用Transformer编码器-解码器结构以及注意力机制的优势,可以从多维传感器数据中自动提取特征并充分挖掘出多维传感器数据与多个故障标签之间的复杂映射关系。经PHM2015 Plant数据集验证表明,该方法在极端类不均衡的工业故障数据中仍可以较好地诊断出工厂生产过程中同时发生的多个故障。 展开更多
关键词 Transformer网络模型 多标签 故障诊断 类不均衡
在线阅读 下载PDF
一种基于深度学习目标检测的长时目标跟踪算法 被引量:2
9
作者 邵江南 葛洪伟 《智能系统学报》 CSCD 北大核心 2021年第3期433-441,共9页
针对长时目标跟踪所面临的目标被遮挡、出视野等常常会导致跟踪漂移或丢失的问题,基于MDNet提出一种深度长时目标跟踪算法(long-term object tracking based on MDNet,LT-MDNet)。首先,引入了一种改进的收缩损失函数,以解决模型训练时... 针对长时目标跟踪所面临的目标被遮挡、出视野等常常会导致跟踪漂移或丢失的问题,基于MDNet提出一种深度长时目标跟踪算法(long-term object tracking based on MDNet,LT-MDNet)。首先,引入了一种改进的收缩损失函数,以解决模型训练时正负样本不均衡的问题;其次,设计了一种高置信度保留样本池,对在线跟踪时的每一帧的有效并且置信度最高结果进行保留,并在池满时替换最低置信度的保留样本;最后,在模型检测到跟踪失败或连续跟踪帧数达到特定阈值时,利用保留样本池进行在线训练更新模型,从而使模型在应对长时跟踪时保持鲁棒和高效。实验结果表明,LT-MDNet在跟踪精度和成功率上都展现了极强的竞争力,并且在目标被遮挡、出视野等情况下保持了优越的跟踪性能和可靠性。 展开更多
关键词 目标跟踪 长时跟踪 神经网络 卷积特征 类不均衡问题 损失函数 特征提取 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部