期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向非独立同分布数据的迭代式联邦学习 被引量:1
1
作者 陈洪洋 李晓会 王天阳 《计算机工程与设计》 北大核心 2025年第4期1064-1071,共8页
针对现有的面向非独立同分布(non-IID)数据的联邦学习优化算法存在训练的模型缺失个性化、模型在测试集上精度较低的问题,提出一种迭代凝聚式簇估计联邦学习算法FL-ICE(iterative cluster estimation federated)。各个客户端联合训练单... 针对现有的面向非独立同分布(non-IID)数据的联邦学习优化算法存在训练的模型缺失个性化、模型在测试集上精度较低的问题,提出一种迭代凝聚式簇估计联邦学习算法FL-ICE(iterative cluster estimation federated)。各个客户端联合训练单个全局共享模型,迭代地依据客户端更新的相似度执行簇估计并通过梯度下降优化簇估计参数,对全局模型进行个性化处理。实验结果表明,该算法可以有效提升模型在测试集上的准确性,使得更大比例的客户端达到目标精度。 展开更多
关键词 联邦学习 分布式机器学习 个性化模型 迭代式训练 簇估计算法 非独立同分布数据 隐私保护
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部