Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial co...Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
基金Projects(50438020 50578162) supported by the National Natural Sceince Foundation of China
文摘Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.