期刊文献+
共找到435篇文章
< 1 2 22 >
每页显示 20 50 100
基于简化脉冲耦合神经网络的人脸识别 被引量:11
1
作者 聂仁灿 姚绍文 周冬明 《计算机科学》 CSCD 北大核心 2014年第2期297-301,共5页
基于简化脉冲耦合神经网络(S-PCNN),提出了一种新颖的人脸识别方法。首先通过对神经元振荡特性的分析,将神经元振荡时间序列(OTS)分解为捕获性振荡时间序列(C-OTS)和自激性振荡时间序列(S-OTS)。然后通过图像几何变换和振荡频图,分析了X... 基于简化脉冲耦合神经网络(S-PCNN),提出了一种新颖的人脸识别方法。首先通过对神经元振荡特性的分析,将神经元振荡时间序列(OTS)分解为捕获性振荡时间序列(C-OTS)和自激性振荡时间序列(S-OTS)。然后通过图像几何变换和振荡频图,分析了X-OTS(OTS、C-OTS和S-OTS)的鉴别特性。最后利用C-OTS+S-OTS和余弦距离测度给出了人脸识别的系统结构。人脸库中的实验结果验证了所提方法的有效性,显示了它比其它传统算法具有更好的识别性能。 展开更多
关键词 简化脉冲耦合神经网络 振荡时间序列 人脸识别
在线阅读 下载PDF
基于简化脉冲耦合神经网络与拉普拉斯金字塔分解的彩色图像融合 被引量:8
2
作者 贺康建 金鑫 +3 位作者 聂仁灿 周冬明 王佺 余介夫 《计算机应用》 CSCD 北大核心 2016年第A01期133-137,共5页
针对图像空间分辨率低及分类精度不高等问题,提出一种基于简化脉冲耦合神经网络(S-PCNN)与拉普拉斯金字塔分解算法的彩色图像融合算法。首先,把RGB图像转换到HSI彩色空间中得到H、S、I三个分量,将H分量输入到S-PCNN模型中,利用S-PCNN对... 针对图像空间分辨率低及分类精度不高等问题,提出一种基于简化脉冲耦合神经网络(S-PCNN)与拉普拉斯金字塔分解算法的彩色图像融合算法。首先,把RGB图像转换到HSI彩色空间中得到H、S、I三个分量,将H分量输入到S-PCNN模型中,利用S-PCNN对H分量进行特征区域聚类后,基于脉冲震荡频图和局部熵实现各源图像的H分量融合;然后采用拉普拉斯金字塔对S、I分量进行分辨率分解,根据不同融合策略对不同拉普拉斯金字塔图层中的S、I分量进行融合。最后,对融合后的H、S、I分量进行彩色空间逆变换,得到最终的RGB图像。实验结果表明,该融合算法在清晰度、空间频率、标准差方面优于传统的主成分分析(PCA)、脉冲耦合神经网络(PCNN)等算法,能很好地保留源图像的细节、纹理和主要特征信息,有效地提高了图像的融合效果。 展开更多
关键词 图像融合 彩色图像 简化脉冲耦合神经网络 拉普拉斯金字塔分解 彩色空间变换
在线阅读 下载PDF
用简化脉冲耦合神经网络实现交通标志图像的类Euclidean距离变换类内特征提取 被引量:7
3
作者 王蒙军 阳路 +1 位作者 王霞 刘剑飞 《光学精密工程》 EI CAS CSCD 北大核心 2012年第12期2751-2758,共8页
脉冲耦合神经网络(PCNN)提取的特征序列的旋转不变性降低了道路交通标志类内匹配识别的准确性,为了提取更有利于形状分类的特征向量,本文利用PCNN的自动波扩散特性,简化了PCNN模型。采用简化PCNN模型产生的类Euclidean距离图像作为分类... 脉冲耦合神经网络(PCNN)提取的特征序列的旋转不变性降低了道路交通标志类内匹配识别的准确性,为了提取更有利于形状分类的特征向量,本文利用PCNN的自动波扩散特性,简化了PCNN模型。采用简化PCNN模型产生的类Euclidean距离图像作为分类特征,利用最小方差值进行匹配分析,并通过实验选取了最佳PCNN参数。针对道路交通标志图像库GB5768-1999的实验结果表明,采用获得的类Euclidean距离图像作为特征向量进行分类匹配,在选定边缘图像的迭代次数N为16,反馈输入固有电势VF为0.65,动态门限固有电势VT为100,卷积核矩阵为5×5时,最小方差值均出现在对应的标准图像位置。结果表明,简化PCNN的类Euclidean距离变换能够有效提取二值边缘图像的形状信息。该方法优于传统PCNN熵序列的特征向量方法,类内区分效果更加明显。 展开更多
关键词 交通标志 脉冲耦合神经网络 自动波扩散 类Euclidean距离 特征提取
在线阅读 下载PDF
基于简化脉冲耦合神经网络的蝗虫图像二值分割 被引量:5
4
作者 熊雪梅 王一鸣 +1 位作者 张小超 郑永军 《农业机械学报》 EI CAS CSCD 北大核心 2007年第10期84-86,107,共4页
采用参数简化的脉冲耦合神经网络(PCNN)分割图像,进行了蝗虫图像分割实验,区域正确识别率达94%,为蝗虫自动侦测系统中的数据处理提供了技术支持。计算机仿真表明,采用PCNN图像分割算法,图像中的目标(蝗虫)易于发现,分割效果明显好于采... 采用参数简化的脉冲耦合神经网络(PCNN)分割图像,进行了蝗虫图像分割实验,区域正确识别率达94%,为蝗虫自动侦测系统中的数据处理提供了技术支持。计算机仿真表明,采用PCNN图像分割算法,图像中的目标(蝗虫)易于发现,分割效果明显好于采用开操作处理的图像。 展开更多
关键词 蝗虫 图像分割 脉冲耦合神经网络
在线阅读 下载PDF
基于改进的简化脉冲耦合神经网络的煤矿井下图像去噪方法 被引量:7
5
作者 冯卫兵 胡俊梅 曹根牛 《工矿自动化》 北大核心 2014年第5期54-58,共5页
针对传统图像去噪方法易使图像模糊和丢失边缘信息等问题,根据煤矿井下视频图像光度不均、噪声较大的特点,提出采用基于改进的简化脉冲耦合神经网络对煤矿井下图像进行去噪处理。对简化的脉冲耦合神经网络模型中神经元连接强度β的选取... 针对传统图像去噪方法易使图像模糊和丢失边缘信息等问题,根据煤矿井下视频图像光度不均、噪声较大的特点,提出采用基于改进的简化脉冲耦合神经网络对煤矿井下图像进行去噪处理。对简化的脉冲耦合神经网络模型中神经元连接强度β的选取方法进行改进,使β依赖于图像像素灰度值,从而更加有效地去除椒盐噪声;对动态门限的衰减时间常数αE的选取方法进行改进,使αE依赖阈值输出的放大系数vE,减少整个模型的参数,并通过实验选取vE值。实验结果表明,与传统的中值滤波、均值滤波方法相比,基于改进的简化脉冲耦合神经网络的去噪方法不仅有效去除了矿井图像的椒盐噪声,而且很好地保持了图像的边缘等细节特征。 展开更多
关键词 矿井图像 视频监控 图像处理 图像去噪 椒盐噪声 脉冲耦合神经网络
在线阅读 下载PDF
一种简化脉冲耦合神经网络的高分辨率农村公路影像分割方法 被引量:4
6
作者 王智灏 刘亚岚 +1 位作者 任玉环 李娅 《遥感信息》 CSCD 北大核心 2019年第1期117-122,共6页
针对高分辨率图像中地物信息表现更加精细,增大了噪声对分割农村公路的影响,而一般的分割方法容易产生过分割现象的问题,提出基于简化脉冲耦合神经网络(pulse coupled neural network,PCNN)农村公路分割方法。该方法首先采用最小交叉熵... 针对高分辨率图像中地物信息表现更加精细,增大了噪声对分割农村公路的影响,而一般的分割方法容易产生过分割现象的问题,提出基于简化脉冲耦合神经网络(pulse coupled neural network,PCNN)农村公路分割方法。该方法首先采用最小交叉熵确定其迭代次数,然后用典型的简化PCNN模型对图像进行分割,并在此分割基础上,利用形态学方法,根据斑块面积的大小对农村公路进行最终分割提取。通过利用0.2m高分辨率无人机影像进行试验,并与经典算法区域生长法和Hough变换直线检测方法比较。结果表明,该方法可有效地分割出农村公路,避免了图像过分割的缺点,具有目标边缘光滑、连贯和清晰的特点,用于高分辨率图像中农村公路的分割处理效果优于常规方法。定量评价结果表明,该方法在总体精度、Kappa系数上都有一定的提高。 展开更多
关键词 脉冲耦合神经网络 最小交叉熵 形态学 农村公路
在线阅读 下载PDF
脉冲耦合神经网络下多视角激光图像点云配准 被引量:1
7
作者 李玮琳 曾琪峰 李颖 《激光杂志》 北大核心 2024年第12期125-130,共6页
多视角配准能够保持场景中物体的几何一致性,但是存在大量遮挡情况,不同视角下的可见性和完整性受限。对此,提出一种脉冲耦合神经网络下多视角激光图像点云配准方法。通过对多视角激光图像的像素噪声响应和灰度分布特性进行分析,得出脉... 多视角配准能够保持场景中物体的几何一致性,但是存在大量遮挡情况,不同视角下的可见性和完整性受限。对此,提出一种脉冲耦合神经网络下多视角激光图像点云配准方法。通过对多视角激光图像的像素噪声响应和灰度分布特性进行分析,得出脉冲耦合神经网络中各个神经元的关键参数,从而确定与神经元对应的动态阈值,实现激光图像多视角分割。分别计算多视角激光图像点云中各个点的三维特征描述子,进行最近邻关系匹配,组建点云关系集合,通过三元组约束优化关系集合识别错误关系点,以关系集中匹配点对之间的误差平方和组建目标函数,通过优化目标函数确定最佳多视角激光图像点云配准方案。实验结果表明,所提方法应用后,区域内部均匀性、区域对比度和最大香农熵较大,点云重叠以及虚假匹配关系较少,降低了Q值。可以有效提升多视角激光图像点云配准结果的精准度。 展开更多
关键词 脉冲耦合神经网络 多视角 激光图像 点云配准
在线阅读 下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
8
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子群优化算法
在线阅读 下载PDF
基于变换域多尺度加权神经网络的全色锐化
9
作者 马飞 孙陆鹏 +1 位作者 杨飞霞 徐光宪 《自然资源遥感》 北大核心 2025年第3期76-84,共9页
为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform,NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network,PCNN)和低秩稀疏分解的全... 为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform,NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network,PCNN)和低秩稀疏分解的全色图像和多光谱图像的锐化模型。该模型分为低频和高频处理模块,对于高频子带,提出了一种适用于不同尺度不同方向高频子带的加权方式,并针对其不同方向上的特性,采用一种自适应PCNN模型;对于低频子带,首先将其分解为低秩与稀疏2部分,并根据低秩部分与稀疏部分特点设计相应的融合规则,再采取逆NSST变换得到融合图像。实验在GeoEye,QuickBird与Pléiades数据集上进行,并针对高频信息多尺度加权模块设计了消融实验,相比于次优模型,峰值信噪比(peak signal-to-noise ratio,PSNR)值分别提高了约1 dB,1.6 dB和2.2 dB。实验结果表明,该模型在指标评估中优于其他算法,并有效解决高频信息提取困难问题。 展开更多
关键词 全色锐化 非下采样剪切波变换 多尺度加权 脉冲耦合神经网络 低秩稀疏分解
在线阅读 下载PDF
一种基于脉冲耦合神经网络和图像熵的自动图像分割方法 被引量:146
10
作者 马义德 戴若兰 李廉 《通信学报》 EI CSCD 北大核心 2002年第1期46-51,共6页
90年代发展形成的脉冲耦合神经网络(PCNN)模型特别适合于图像分割、边缘提取等方面的应用研究,但众所周知,PCNN模型图像分割效果不但取决于PCNN模型中各个参数的合理选择,而且同时还取决于循环迭代次数的确定选择准则,通常循环迭代次数... 90年代发展形成的脉冲耦合神经网络(PCNN)模型特别适合于图像分割、边缘提取等方面的应用研究,但众所周知,PCNN模型图像分割效果不但取决于PCNN模型中各个参数的合理选择,而且同时还取决于循环迭代次数的确定选择准则,通常循环迭代次数N的选择通过人工交互方式来确定。正因如此选择合适的准则来确定N是PCNN图像分割的关键,但目前还没有文献提出一个合适的准则来解决这个问题。本文结合图像统计特性和PCNN参数模型提出了熵值最大准则。该准则实现了PCNN神经网络的自动图像分割。对于PCNN的理论研究和实际应用具有非常重要的现实意义。 展开更多
关键词 脉冲耦合神经网络 图像分割 图像熵 统计特性
在线阅读 下载PDF
利用脉冲耦合神经网络的高光谱多波段图像融合方法 被引量:9
11
作者 常威威 郭雷 +1 位作者 付朝阳 刘坤 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第3期205-209,235,共6页
针对高光谱图像波段众多、数据量大的特点,提出了一种基于脉冲耦合神经网络(Pulse Coupled Neural Networks,PCNN)模型的高光谱多波段图像融合方法.根据高光谱图像多输入的特点对原始PCNN模型进行了扩充,采用多通道PCNN模型来对输入图... 针对高光谱图像波段众多、数据量大的特点,提出了一种基于脉冲耦合神经网络(Pulse Coupled Neural Networks,PCNN)模型的高光谱多波段图像融合方法.根据高光谱图像多输入的特点对原始PCNN模型进行了扩充,采用多通道PCNN模型来对输入图像进行非线性融合处理.通过分析传统变阈值衰减模型的特点及其不足,提出了修正的变阈值指数增加模型,以改善融合效果和降低PCNN运行的时间复杂度.利用记录点火时刻的赋时矩阵得到带有一定增强效果的融合结果图像.实验结果表明,该方法的融合效果要优于传统的主成分分析融合方法和小波变换融合方法. 展开更多
关键词 高光谱图像 图像融合 脉冲耦合神经网络 多通道脉冲耦合神经网络模型
在线阅读 下载PDF
脉冲耦合神经网络在图像处理中的参数确定 被引量:20
12
作者 于江波 陈后金 +1 位作者 王巍 李居朋 《电子学报》 EI CAS CSCD 北大核心 2008年第1期81-85,共5页
脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出... 脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出了PCNN模型应用于图像处理中各参数确定的准则.在将其应用于眼底图像处理中,取得与人工参数选取相似的效果,表现出较好的鲁棒性. 展开更多
关键词 脉冲耦合神经网络 参数确定 计算机仿真 图像处理
在线阅读 下载PDF
基于脉冲耦合神经网络的地震多属性融合方法 被引量:7
13
作者 李全忠 彭真明 +1 位作者 周晶晶 张萍 《石油地球物理勘探》 EI CSCD 北大核心 2014年第2期316-321,221,共6页
针对单一地震属性进行油气储层预测时往往存在多解性问题,提出基于脉冲耦合神经网络(PCNN)的地震多属性融合方法:通过简化PCNN模型,利用PCNN神经元结构很强的非线性处理功能,确定各神经元之间的数据融合系数,进而获得对应神经元的融合... 针对单一地震属性进行油气储层预测时往往存在多解性问题,提出基于脉冲耦合神经网络(PCNN)的地震多属性融合方法:通过简化PCNN模型,利用PCNN神经元结构很强的非线性处理功能,确定各神经元之间的数据融合系数,进而获得对应神经元的融合数据输出,从而实现了地震多属性的融合。该方法简捷、计算效率高、融合效果好。通过川东北地区多种属性切片数据的应用验证了该方法的合理性和有效性。 展开更多
关键词 脉冲耦合神经网络 地震属性 模型简化 融合
在线阅读 下载PDF
一种改进型脉冲耦合神经网络及其图像分割 被引量:13
14
作者 张军英 樊秀菊 +1 位作者 董继扬 石美红 《电子学报》 EI CAS CSCD 北大核心 2004年第7期1223-1226,共4页
本文结合人类视觉系统 (HVS)对图像信息含量区域敏感度不同这一特性 ,以神经元接近点火程度的一致性描述图像空间邻域所含的信息量 ,对通常的脉冲耦合神经网络模型 (PCNN -PulseCoupledNeuralNetwork)进行了改进 ,提出了一种基于改进PCN... 本文结合人类视觉系统 (HVS)对图像信息含量区域敏感度不同这一特性 ,以神经元接近点火程度的一致性描述图像空间邻域所含的信息量 ,对通常的脉冲耦合神经网络模型 (PCNN -PulseCoupledNeuralNetwork)进行了改进 ,提出了一种基于改进PCNN的图像自适应分割算法 .该算法根据象素及其周边区域的信息量大小发放不同值的脉冲 ,从而自适应地将图像分为多个不同等级的高低信息区域 ,较好地仿真了人类视觉系统特性 .最后对用这种方法进行图像分割的结果进行基于信息量的图像压缩 ,在压缩比和重建图像主观视觉感知质量上均达到了良好的性能 。 展开更多
关键词 脉冲耦合神经网络 图像分割 图像信息 图像压缩
在线阅读 下载PDF
最小误差准则与脉冲耦合神经网络的裂缝检测 被引量:19
15
作者 赵慧洁 葛文谦 李旭东 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期637-642,共6页
表面裂缝检测能够有效判断混凝土桥梁出现的结构性危险。但裂缝特征的多样性、桥梁表面污点引起的图像噪声以及不均匀照明引起的灰度不均等给裂缝检测带来极大的困难。为能够在复杂背景下检测裂缝,分析裂缝图像特征,由脉冲耦合神经网络(... 表面裂缝检测能够有效判断混凝土桥梁出现的结构性危险。但裂缝特征的多样性、桥梁表面污点引起的图像噪声以及不均匀照明引起的灰度不均等给裂缝检测带来极大的困难。为能够在复杂背景下检测裂缝,分析裂缝图像特征,由脉冲耦合神经网络(pulse coupled neural networks,PCNN)的运行特征和神经元的状态变化分析简化PCNN模型,将简化PCNN模型用于裂缝图像的分割,根据最小误差准则判断PCNN迭代的终止条件,实现了PCNN的裂缝图像自动分割。由圆形度与扁度结合计算区域特征,去除分割后的各种干扰,实现表面裂缝的有效检测。通过敏感度和特异性计算绘制ROC(receiver operating charac-teristics)曲线,比较不同分割方法的曲线特性以评估算法,对实际裂缝图像的处理结果表明了该方法对裂缝图像检测的有效性。 展开更多
关键词 裂缝检测 脉冲耦合神经网络 最小误差准则 ROC曲线
在线阅读 下载PDF
应用小波变换的自适应脉冲耦合神经网络在图像融合中的应用 被引量:23
16
作者 武治国 王延杰 李桂菊 《光学精密工程》 EI CAS CSCD 北大核心 2010年第3期708-715,共8页
设计并实现了一种适用于红外与可见光图像融合的基于小波变换的自适应脉冲耦合神经网络(PCNN)融合技术。首先,对融合的两幅图像进行小波分解得到两组多尺度图像。然后,在小波域充分利用PCNN的同步激发特性,进行PCNN的融合策略设计;使用... 设计并实现了一种适用于红外与可见光图像融合的基于小波变换的自适应脉冲耦合神经网络(PCNN)融合技术。首先,对融合的两幅图像进行小波分解得到两组多尺度图像。然后,在小波域充分利用PCNN的同步激发特性,进行PCNN的融合策略设计;使用不同频率下小波系数的局域熵作为PCNN对应神经元的链接强度,经过PCNN点火获得参与融合图像在小波域中的点火映射图;根据点火时间计算点火映射梯度图,再通过判决选择算子,选择点火时间梯度最大的小波系数作为融合系数。最后,对融合后的小波系数进行重构生成融合图像。进行了两组图像融合实验,结果显示,在迭代次数为50次时,与经典小波方法相比,两组实验结果的熵分别提高1.1%,0.7%;平均梯度分别提高8.3%,3.7%;空间频率分别提高2.5%,1.5%;标准差分别提高1.9%,0.6%;交叉熵分别缩小5.6%,4.9%,结果表明本文方法用于红外与可见光图像的融合十分有效。 展开更多
关键词 图像融合 脉冲耦合神经网络 小波变换 局域熵 点火映射图
在线阅读 下载PDF
基于视觉显著性和脉冲耦合神经网络的成熟桑葚图像分割 被引量:19
17
作者 贺付亮 郭永彩 +1 位作者 高潮 陈静 《农业工程学报》 EI CAS CSCD 北大核心 2017年第6期148-155,共8页
为了提高在自然采摘环境中成熟桑葚机器视觉识别的有效性和鲁棒性,克服图像目标形态小、分布杂散、背景干扰多和光照不均匀等困难,该文提出了一种采用视觉显著性和脉冲耦合神经网络(pulse coupled neural network,PCNN)模型的成熟桑葚... 为了提高在自然采摘环境中成熟桑葚机器视觉识别的有效性和鲁棒性,克服图像目标形态小、分布杂散、背景干扰多和光照不均匀等困难,该文提出了一种采用视觉显著性和脉冲耦合神经网络(pulse coupled neural network,PCNN)模型的成熟桑葚图像分割方法。该方法首先将采集的图像映射到Lab颜色空间,利用空间颜色分量的算术平均值和高斯滤波值之间的差异,构建起桑葚图像的频率调谐视觉显著图;其次,提取采集图像在HSI颜色空间的色调分量,经过均衡化处理后,与视觉显著图进行融合,实现桑葚目标的融合特征表达;最后,通过改进的分层阈值化脉冲耦合神经网络模型进行目标分割以及形态学处理,得到成熟桑葚的识别结果。利用从重庆市天府镇果桑生态园采集到的200余幅桑树挂果图像进行试验,结果表明,该方法能够在不同光照条件的复杂背景下,有效分割出成熟果实,平均误分率为1.87%,优于结合频率调谐视觉显著性的OTSU法(17.73%)、K-means聚类算法(10.69%)、基于Itti视觉显著性的PCNN分割方法(7.34%)和基于GBVS(graph-based visual saliency,GBVS)视觉显著性的PCNN分割方法(5.83%)。研究结果为成熟桑葚果实的智能化识别提供参考。 展开更多
关键词 图像分割 机器视觉 模型 桑葚 视觉显著性 频率调谐 脉冲耦合神经网络
在线阅读 下载PDF
利用脉冲耦合神经网络的图像融合 被引量:13
18
作者 陈浩 朱娟 +1 位作者 刘艳滢 王延杰 《光学精密工程》 EI CAS CSCD 北大核心 2010年第4期995-1001,共7页
为了获得对同一场景更为准确、全面和可靠的图像描述,提出了一种基于脉冲耦合神经网络(PCNN)的图像融合方法。将多源传感器图像配准后的各个源图像用9/7小波变换的提升算法进行分解,从而得到各个源图像的低频分量和高频分量。对于低频分... 为了获得对同一场景更为准确、全面和可靠的图像描述,提出了一种基于脉冲耦合神经网络(PCNN)的图像融合方法。将多源传感器图像配准后的各个源图像用9/7小波变换的提升算法进行分解,从而得到各个源图像的低频分量和高频分量。对于低频分量,采用像素绝对值选大法进行融合;而高频分量则作为PCNN的输入,在迭代结束后,通过比较PCNN点火次数得到一系列融合子图像;然后,用9/7小波的提升算法将获取的一系列多尺度融合子图像进行反变换得到最终的融合图像。设计了可见光图像与红外图像的融合实验,对融合图像的熵、平均梯度、标准差、空间频率进行了定量比较。当使用标准源图像进行融合时,各值比使用传统小波变换与PCNN相结合的图像融合方法分别高0.0104,0.2459,0.1131和0.2846。 展开更多
关键词 红外图像 图像融合 9/7小波 提升算法 脉冲耦合神经网络
在线阅读 下载PDF
基于参数自适应脉冲耦合神经网络的黄瓜目标分割 被引量:7
19
作者 王海青 姬长英 +1 位作者 顾宝兴 田光兆 《农业机械学报》 EI CAS CSCD 北大核心 2013年第3期204-208,共5页
对脉冲耦合神经网络的参数进行简化,并自适应确定各参数,将图像的空间信息和灰度信息耦合到加权耦合连接系数中,进行温室黄瓜图像分割,采用二维Tsallis熵选择最佳迭代结果。试验结果表明:用区域对比度(GC)和区域一致性(UC)评价方法评价... 对脉冲耦合神经网络的参数进行简化,并自适应确定各参数,将图像的空间信息和灰度信息耦合到加权耦合连接系数中,进行温室黄瓜图像分割,采用二维Tsallis熵选择最佳迭代结果。试验结果表明:用区域对比度(GC)和区域一致性(UC)评价方法评价,该方法的分割效果好于采用香农熵和最小交叉熵终止迭代的标准脉冲耦合神经网络分割效果。 展开更多
关键词 黄瓜 机器视觉 图像分割 参数自适应 脉冲耦合神经网络 加权耦合连接系数
在线阅读 下载PDF
自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割 被引量:15
20
作者 徐光柱 张柳 +2 位作者 邹耀斌 夏平 雷帮军 《光学精密工程》 EI CAS CSCD 北大核心 2017年第3期756-764,共9页
针对眼底图像中血管与背景间对比度低以及血管自身结构复杂等因素对视网膜血管分割所带来的问题,本文提出了一种具有自适应连接值的脉冲耦合神经网络(PCNN)与高斯匹配滤波器相结合的视网膜血管分割方法。首先,利用对比度受限制的自适应... 针对眼底图像中血管与背景间对比度低以及血管自身结构复杂等因素对视网膜血管分割所带来的问题,本文提出了一种具有自适应连接值的脉冲耦合神经网络(PCNN)与高斯匹配滤波器相结合的视网膜血管分割方法。首先,利用对比度受限制的自适应直方图均衡化(CLAHE)技术与二维高斯匹配滤波器对血管区域的对比度进行有效增强。然后,利用经验阈值选择出一定的血管区域作为初始种子区域。接着,将带有快速连接机制的PCNN与种子区域增长思想相结合,通过自适应动态设置PCNN中的连接强度系数和停止条件,实现眼底图像中血管区域的自动生长。整个算法在DRIVE视网膜图像库中进行了测试,实验结果表明,相比于不使用动态连接强度系数与停止条件的方法,所提出算法的灵敏度从49.79%提高至70.39%,准确度从95%提高到95.39%。证明了该算法具有较好的分割精确度和应用价值。 展开更多
关键词 视网膜图像处理 血管分割 脉冲耦合神经网络(PCNN) 高斯匹配滤波器 快速连接
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部