期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于改进Hyper-YOLO的煤矿输送带异物检测方法
1
作者 李刚 朱宇 +6 位作者 杨庆贺 邹军鹏 才天 贺鹏 张亚兵 赵艺鸣 田鑫浩 《工矿自动化》 北大核心 2025年第7期114-121,共8页
基于YOLO系列的输送带异物检测技术已取得丰富的研究成果,但其颈部网络无法使相隔较远的特征层直接交换特征信息,引发小目标漏检、重复检测等问题。Hyper-YOLO可在颈部网络实现特征层之间跨层、跨位置的高阶关联,但会增加计算量,且降低... 基于YOLO系列的输送带异物检测技术已取得丰富的研究成果,但其颈部网络无法使相隔较远的特征层直接交换特征信息,引发小目标漏检、重复检测等问题。Hyper-YOLO可在颈部网络实现特征层之间跨层、跨位置的高阶关联,但会增加计算量,且降低对高频特征信息的敏感性,导致在噪声较为敏感的区域特征提取能力下降,预测边界框发生偏移。针对上述问题,提出一种基于改进Hyper-YOLO的煤矿输送带异物检测方法。在图像预处理阶段采用动态对比度受限自适应直方图均衡化(Dy-CLAHE)方法,将Laplacian算子引入对比度受限自适应直方图均衡化(CLAHE)框架,建立噪声水平与对比度限制阈值之间的动态映射关系,有效解决了粉尘环境下图像细节丢失和噪声放大的问题;对Hyper-YOLO进行改进,采用高效交并比(EIoU)损失函数优化边界框回归过程,提升了预测边界框定位精度,并在混合聚合网络(MANet)的深层和浅层嵌入高效通道注意力机制(ECA)模块,通过局部跨通道交互动态调整通道权重,有效平衡对高频和低频特征信息的敏感性,降低小目标异物的漏检率,同时通过简化快速空间金字塔池化(SimSPPF)模块,减少了冗余计算,在保证精度的同时提升了推理速度。实验结果表明:改进Hyper-YOLO在准确率和mAP@0.5指标上分别为94.2%和93.4%,相较于Hyper-YOLO提高了5.0%和3.5%,参数量为3.26×10^(6)个,召回率为87.7%,检测速度为158帧/s,满足煤矿井下异物实时检测的需求;在不同煤矿输送带异物检测场景下无漏检及重复检测情况,预测边界框更贴合异物。 展开更多
关键词 煤矿输送带 异物检测 Hyper-YOLO 动态对比度受限自适应直方图均衡 EIoU 高效通道注意力机制 简化快速空间金字塔池化
在线阅读 下载PDF
基于YOLOv8的玉米害虫识别定位系统
2
作者 邹鑫 胡艳茹 《计算机应用》 北大核心 2025年第S1期282-288,共7页
为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫... 为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。 展开更多
关键词 害虫 YOLOv8 大型可分离卷积核注意力 空间快速金字塔池化 识别 定位
在线阅读 下载PDF
基于交错部分卷积的高压输电线路检测方法 被引量:1
3
作者 李利荣 戴俊伟 +3 位作者 崔浩 梅冰 贺章擎 李婕 《电网技术》 EI CSCD 北大核心 2024年第12期5159-5168,I0074-I0076,I0073,共14页
在输电线路无人机巡检任务中,针对基于深度学习的航拍图像中待检测目标检测精度不高和模型过大而难以部署至无人机等移动端设备的问题,提出了以YOLOv7-tiny为基础网络进行改进以实现提高检测精度并将模型轻量化的方法。首先,该文设计了... 在输电线路无人机巡检任务中,针对基于深度学习的航拍图像中待检测目标检测精度不高和模型过大而难以部署至无人机等移动端设备的问题,提出了以YOLOv7-tiny为基础网络进行改进以实现提高检测精度并将模型轻量化的方法。首先,该文设计了一种交错部分卷积(interlace partial convolution,IPConv),并利用其构建IP1-ELAN、IP2-ELAN模块作为网络的特征提取模块,使其能有效减轻模型中通道冗余问题,并大幅度减少模型的参数量和浮点数;其次,在骨干网络最后一层中融合高效多尺度注意力机制(efficient multi-scale attention,EMSA)以实现跨通道交互,增强目标区域特征提取能力;最后,融合快速空间金字塔池化及跨阶段空间通道(spatial pyramid pooling faster,cross stage partial channel,SPPFCSPC)模块,进一步增强特征提取能力,提升模型检测性能。通过实验验证,该文方法在输电线路巡检数据集中模型参数量和浮点数分别仅为3.79M,8.4G,检测精度为85.8%。综合性能优于目前常用的检测算法,能够基本满足部署至无人机端进行检测任务。 展开更多
关键词 输电线路巡检 通道冗余 多尺度 交错部分卷积 高效多尺度注意力机制 快速空间金字塔池化及跨阶段空间通道
在线阅读 下载PDF
改进YOLOv5s的弱光水下生物目标检测算法 被引量:9
4
作者 陈宇梁 董绍江 +1 位作者 孙世政 闫凯波 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期499-507,共9页
针对水下光学图像目标检测过程中由于水中光线衰弱严重、图像环境复杂和拍摄设备移动等造成的生物识别精度低的问题,提出了基于改进YOLOv5s的弱光水下生物目标实时检测算法YOLOv5s-underwater。针对弱光水下光线衰弱的问题,引入了限制... 针对水下光学图像目标检测过程中由于水中光线衰弱严重、图像环境复杂和拍摄设备移动等造成的生物识别精度低的问题,提出了基于改进YOLOv5s的弱光水下生物目标实时检测算法YOLOv5s-underwater。针对弱光水下光线衰弱的问题,引入了限制对比度自适应直方图均衡(CLAHE)算法对输入图像进行预处理,解决了颜色失真和图像毛糙的问题。针对复杂的弱光水下图像环境,提出了快速空间金字塔池化(SPPF)模块,解决了水下物体区分度低和特征损失严重的问题。针对拍摄设备移动带来的场景和形态变化问题,提出了一种基于旋转窗口的Swin-Transformer模块,提高了模型的泛化能力。针对水下小目标,修改了网络模型结构,提高了小目标的检测能力。仿真和实验结果表明:所提算法相较于YOLOv5s检测精度提高30.7%,证明了算法的有效性。 展开更多
关键词 弱光水下生物目标 YOLOv5s 限制对比度自适应直方图均衡 快速空间金字塔池化 旋转窗口
在线阅读 下载PDF
基于改进YOLOX-m的安全帽佩戴检测 被引量:7
5
作者 王晓龙 江波 《计算机工程》 CAS CSCD 北大核心 2023年第12期252-261,共10页
安全帽佩戴检测是安全监控系统中的重要组成部分,其检测精度取决于目标分类、小目标检测、域迁移差异等因素。针对现有基于YOLOX-m模型的安全帽佩戴检测算法通常存在分类精度较低、检测目标不完整、轻量化模型性能下降等问题,构建一种... 安全帽佩戴检测是安全监控系统中的重要组成部分,其检测精度取决于目标分类、小目标检测、域迁移差异等因素。针对现有基于YOLOX-m模型的安全帽佩戴检测算法通常存在分类精度较低、检测目标不完整、轻量化模型性能下降等问题,构建一种基于多阶段网络训练策略的改进YOLOX-m模型。首先对YOLOX-m主干特征网络卷积块的堆叠次数进行重新设计,在减小网络规模的同时最大化模型性能,然后将残差化重参视觉几何组与快速空间金字塔池化相结合,提高检测精度和推理速度。设计一种多阶段网络训练策略,将训练集和测试集拆分成多个组,并结合推理阶段生成的伪标签进行多次网络训练,以减少域迁移差异,获得更高的检测精度。实验结果表明,与YOLOX-m模型相比,改进YOLOX-m模型的推理延迟降低了5 ms,模型大小减少了4.7 MB,检测精度提高了1.26个百分点。 展开更多
关键词 安全帽佩戴检测 深度学习 残差化重参视觉几何组 快速空间金字塔池化 多阶段网络训练策略
在线阅读 下载PDF
基于ASPP-SOLOv2的复杂场景下透明玻璃仪器实例分割
6
作者 葛建统 杨鑫 +3 位作者 祝模芮 冉进业 翟持 张浩 《高校化学工程学报》 EI CAS CSCD 北大核心 2023年第6期962-970,共9页
针对深度学习方法对复杂背景下实验室透明玻璃仪器识别效果不佳的问题,建立包含1548张含常用玻璃化学仪器图像的实验室复杂场景实例分割数据集,提出基于动态快速实例分割算法2.0版(SOLOv2)的透明仪器实例分割算法,利用空洞空间金字塔池... 针对深度学习方法对复杂背景下实验室透明玻璃仪器识别效果不佳的问题,建立包含1548张含常用玻璃化学仪器图像的实验室复杂场景实例分割数据集,提出基于动态快速实例分割算法2.0版(SOLOv2)的透明仪器实例分割算法,利用空洞空间金字塔池化(ASPP)融合多尺度信息,通过自下而上增强方式提高底层信息利用率,交并比阈值大于50%的精确率最终达到90.50%,类平均精度(APav)达到76.00%,比原始方法平均精度提高8.7%。消融实验表明ASPP的引入增强透明仪器的几何、边缘等特征的表示能力,提高对密集重叠目标的分割精度。该方法使APav提高22.58%,在骨干网络特征分辨率为原图1/16的阶段,加入该模块可实现浅层信息和高阶语义信息的最佳平衡。 展开更多
关键词 实例分割 透明玻璃仪器数据集 动态快速实例分割 空洞空间金字塔池化
在线阅读 下载PDF
基于改进YOLOv4-Tiny的缝纫线迹 质量检测方法 被引量:2
7
作者 马创佳 齐立哲 +2 位作者 高晓飞 王子恒 孙云权 《纺织学报》 EI CAS CSCD 北大核心 2023年第8期181-188,共8页
针对人工检测缝纫线迹质量效率低下、当前算法在缝纫线迹质量检测应用上难以检测与面料颜色相近的线迹以及易受面料褶皱、光照变化等因素干扰的问题,提出一种改进的YOLOv4-Tiny目标检测模型,实现缝纫线迹针脚点的识别和定位,进而实现质... 针对人工检测缝纫线迹质量效率低下、当前算法在缝纫线迹质量检测应用上难以检测与面料颜色相近的线迹以及易受面料褶皱、光照变化等因素干扰的问题,提出一种改进的YOLOv4-Tiny目标检测模型,实现缝纫线迹针脚点的识别和定位,进而实现质量检测。首先在YOLOv4-Tiny中引入用SoftPool改进的卷积注意力机制,加强网络对线迹特征的注意;然后在YOLO检测头前引入由SoftPool组成的Soft-SPPF模块,实现模型在检测中对多尺度特征的利用;最后,利用改进后的算法输出针脚点的数量和坐标信息,计算线迹针脚点的密度和均匀度。实验结果表明:在自建数据集上,所提算法的平均精度达到85.50%,检测时间为15.9 ms,相比原算法和常用的目标检测模型更适用于缝纫线迹检测,且该方法计算所得的线迹密度结果与人工检测的差值在0.6针/(10 cm)内,均匀度计算结果相近,满足实际检测精度要求。 展开更多
关键词 缝纫线迹 质量检测 YOLOv4-Tiny 卷积注意力机制 快速空间金字塔池化 服装质量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部