近年来,深度强化学习在复杂控制任务中取得了令人瞩目的效果,然而由于超参数的高敏感性和收敛性难以保证等原因,严重影响了其对现实问题的适用性.元启发式算法作为一类模拟自然界客观规律的黑盒优化方法,虽然能够有效避免超参数的敏感性...近年来,深度强化学习在复杂控制任务中取得了令人瞩目的效果,然而由于超参数的高敏感性和收敛性难以保证等原因,严重影响了其对现实问题的适用性.元启发式算法作为一类模拟自然界客观规律的黑盒优化方法,虽然能够有效避免超参数的敏感性,但仍存在无法适应待优化参数量规模巨大和样本使用效率低等问题.针对以上问题,提出融合引力搜索的双延迟深度确定策略梯度方法(twin delayed deep deterministic policy gradient based on gravitational search algorithm,GSA-TD3).该方法融合两类算法的优势:一是凭借梯度优化的方式更新策略,获得更高的样本效率和更快的学习速度;二是将基于万有引力定律的种群更新方法引入到策略搜索过程中,使其具有更强的探索性和更好的稳定性.将GSA-TD3应用于一系列复杂控制任务中,实验表明,与前沿的同类深度强化学习方法相比,GSA-TD3在性能上具有显著的优势.展开更多
文摘蛋白质复合物的检测有助于从分子水平上理解生命的活动过程。针对群智能算法检测蛋白质复合物时假阳/阴性率高、准确率低、种群多样性下降等问题,提出了基于强化学习的离散层级萤火虫算法检测蛋白质复合物(reinforcement learning-based discrete level firefly algorithm for detecting protein complexes,RLDLFA-DPC)。引入强化学习思想提出一种自适应层级划分策略,动态调整层级结构,能有效解决迭代后期种群多样性下降的问题。在层级学习策略中个体向两个优秀层级学习,避免算法陷入局部最优。为了提高蛋白质复合物检测的精度,结合个体环境信息提出自适应搜索半径的局部搜索策略。最后,在酵母蛋白质的4个数据集上,与8种经典的蛋白质复合物检测方法进行对比,验证了该方法的有效性。
文摘近年来,深度强化学习在复杂控制任务中取得了令人瞩目的效果,然而由于超参数的高敏感性和收敛性难以保证等原因,严重影响了其对现实问题的适用性.元启发式算法作为一类模拟自然界客观规律的黑盒优化方法,虽然能够有效避免超参数的敏感性,但仍存在无法适应待优化参数量规模巨大和样本使用效率低等问题.针对以上问题,提出融合引力搜索的双延迟深度确定策略梯度方法(twin delayed deep deterministic policy gradient based on gravitational search algorithm,GSA-TD3).该方法融合两类算法的优势:一是凭借梯度优化的方式更新策略,获得更高的样本效率和更快的学习速度;二是将基于万有引力定律的种群更新方法引入到策略搜索过程中,使其具有更强的探索性和更好的稳定性.将GSA-TD3应用于一系列复杂控制任务中,实验表明,与前沿的同类深度强化学习方法相比,GSA-TD3在性能上具有显著的优势.