Well aligned nanotubes with diameter of 30—50 nm have been synthesized on a porous alumina template by microwave plasma enhanced chemical vapor deposition (MW PECVD). By this means, the control over either diameter o...Well aligned nanotubes with diameter of 30—50 nm have been synthesized on a porous alumina template by microwave plasma enhanced chemical vapor deposition (MW PECVD). By this means, the control over either diameter or length of the nanotubes could be realized. The hollow structure and vertically aligned features have been verified by scanning electron and transmission electron microscopic images. In comparison with the reported fabrication methods, lower synthesis temperature (below 520 ℃) and simpler process (no negative dc bias applied) have been achieved, which could be of great importance for both theoretical research and pratical applications.展开更多
石墨烯具有优异的光电性能,是极具潜力的新一代导电材料。采用传统的热化学气相沉积法制备单层石墨烯需要高温反应条件,试验尝试采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD),在550℃的反应温度下...石墨烯具有优异的光电性能,是极具潜力的新一代导电材料。采用传统的热化学气相沉积法制备单层石墨烯需要高温反应条件,试验尝试采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD),在550℃的反应温度下,较短的反应时间内,在铜箔衬底上制备出石墨烯薄膜。考察了甲烷和氢气流量比、氩气的作用以及衬底通电与否等因素对石墨烯生长的影响。研究发现,在甲烷与氢气流量比为1∶1,通入氩气,不给铜箔衬底通电的试验条件下,制备出的石墨烯薄膜电阻值为4.15 kΩ,显示出较好的光电特性。展开更多
文摘Well aligned nanotubes with diameter of 30—50 nm have been synthesized on a porous alumina template by microwave plasma enhanced chemical vapor deposition (MW PECVD). By this means, the control over either diameter or length of the nanotubes could be realized. The hollow structure and vertically aligned features have been verified by scanning electron and transmission electron microscopic images. In comparison with the reported fabrication methods, lower synthesis temperature (below 520 ℃) and simpler process (no negative dc bias applied) have been achieved, which could be of great importance for both theoretical research and pratical applications.