In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize...In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.展开更多
Finite-difference time-domain(FDTD) method is used to simulate the propagation of electromagnetic wave in left-handed material slab(LHMs) with cold plasma model The effects of optical propagation in the left-handed ma...Finite-difference time-domain(FDTD) method is used to simulate the propagation of electromagnetic wave in left-handed material slab(LHMs) with cold plasma model The effects of optical propagation in the left-handed material compared to convex lens are discussed.The wider the LHMs is,the stronger electric field of focusing image in left-handed material slab is confirmed by the simulation with various slab length.However,the outer image point location would slightly moves to the LHMs side when the length of LHMs is reduced.展开更多
基金Supported by the National Natural Science Foundation of China(62174092)the Open Fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)。
文摘In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.
基金Supported by the National Natural Science Foundation of China(60601028)
文摘Finite-difference time-domain(FDTD) method is used to simulate the propagation of electromagnetic wave in left-handed material slab(LHMs) with cold plasma model The effects of optical propagation in the left-handed material compared to convex lens are discussed.The wider the LHMs is,the stronger electric field of focusing image in left-handed material slab is confirmed by the simulation with various slab length.However,the outer image point location would slightly moves to the LHMs side when the length of LHMs is reduced.