本文利用等离子体耦合催化剂的方式进行CH_(4)干重整(Dry Reforming of Methane,DRM),重点考察了反应温度、CO_(2)/CH_(4)物质的量比、合成气主要气体组分浓度(N_(2)、H2、CO、H2O)对CH_(4)转化率及等离子体催化能量效率的影响。结果表...本文利用等离子体耦合催化剂的方式进行CH_(4)干重整(Dry Reforming of Methane,DRM),重点考察了反应温度、CO_(2)/CH_(4)物质的量比、合成气主要气体组分浓度(N_(2)、H2、CO、H2O)对CH_(4)转化率及等离子体催化能量效率的影响。结果表明,以La-Ni/γ-Al_(2)O_(3)为催化剂,当反应温度450℃,CO_(2)/CH_(4)物质的量比为1.0时,CH_(4)转化率为41.57%;提高CO_(2)/CH_(4)物质的量比可提高CH_(4)转化率,当CO_(2)/CH_(4)物质的量比为5.0时,等离子体催化CH_(4)干重整过程的CH_(4)转化率可达92.82%。温度和CO_(2)/CH_(4)物质的量比对CH_(4)转化率影响显著,气体组分的变化改变了体系中的激发态粒子,不仅直接影响到CH_(4)转化率,还影响着催化剂表面积炭。向反应体系中添加N_(2)、H2O可提高CH_(4)转化率,并抑制积炭;而添加H2、CO后CH_(4)转化率显著降低。研究结果可望为生物质气化合成化工品的工艺开发提供基础数据和参考依据。展开更多
低温等离子体(Low temperature plasma,LTP)可以将热力学稳定的CO_(2)和H_(2)O转化为高附加值产物,在CO_(2)资源化利用和能源转化等领域有广阔前景,但是H_(2)O的强猝灭效应使得LTP转化CO_(2)/H_(2)O的性能提升极具挑战。本文综述了LTP转...低温等离子体(Low temperature plasma,LTP)可以将热力学稳定的CO_(2)和H_(2)O转化为高附加值产物,在CO_(2)资源化利用和能源转化等领域有广阔前景,但是H_(2)O的强猝灭效应使得LTP转化CO_(2)/H_(2)O的性能提升极具挑战。本文综述了LTP转化CO_(2)/H_(2)O的研究进展,包括LTP转化CO_(2)/H_(2)O的反应动力学,以及不同LTP、催化剂、反应器对CO_(2)/H_(2)O转化性能的影响。通过对转化性能和反应机理分析,发现H_(2)O对电子的强吸附效应、产物复合反应和H原子的低密度、副反应的竞争分别是抑制原料气转化率和高附加值产物选择性的关键。针对上述问题,本文从反应器优化、引入其他反应物、催化剂设计和串联催化四个方面,提出性能提升策略。最后,对LTP转化CO_(2)/H_(2)O的重点研究方向进行了展望。展开更多
文摘本文利用等离子体耦合催化剂的方式进行CH_(4)干重整(Dry Reforming of Methane,DRM),重点考察了反应温度、CO_(2)/CH_(4)物质的量比、合成气主要气体组分浓度(N_(2)、H2、CO、H2O)对CH_(4)转化率及等离子体催化能量效率的影响。结果表明,以La-Ni/γ-Al_(2)O_(3)为催化剂,当反应温度450℃,CO_(2)/CH_(4)物质的量比为1.0时,CH_(4)转化率为41.57%;提高CO_(2)/CH_(4)物质的量比可提高CH_(4)转化率,当CO_(2)/CH_(4)物质的量比为5.0时,等离子体催化CH_(4)干重整过程的CH_(4)转化率可达92.82%。温度和CO_(2)/CH_(4)物质的量比对CH_(4)转化率影响显著,气体组分的变化改变了体系中的激发态粒子,不仅直接影响到CH_(4)转化率,还影响着催化剂表面积炭。向反应体系中添加N_(2)、H2O可提高CH_(4)转化率,并抑制积炭;而添加H2、CO后CH_(4)转化率显著降低。研究结果可望为生物质气化合成化工品的工艺开发提供基础数据和参考依据。
文摘低温等离子体(Low temperature plasma,LTP)可以将热力学稳定的CO_(2)和H_(2)O转化为高附加值产物,在CO_(2)资源化利用和能源转化等领域有广阔前景,但是H_(2)O的强猝灭效应使得LTP转化CO_(2)/H_(2)O的性能提升极具挑战。本文综述了LTP转化CO_(2)/H_(2)O的研究进展,包括LTP转化CO_(2)/H_(2)O的反应动力学,以及不同LTP、催化剂、反应器对CO_(2)/H_(2)O转化性能的影响。通过对转化性能和反应机理分析,发现H_(2)O对电子的强吸附效应、产物复合反应和H原子的低密度、副反应的竞争分别是抑制原料气转化率和高附加值产物选择性的关键。针对上述问题,本文从反应器优化、引入其他反应物、催化剂设计和串联催化四个方面,提出性能提升策略。最后,对LTP转化CO_(2)/H_(2)O的重点研究方向进行了展望。