针对人体通信技术在可穿戴设备中应用缺少准确的理论分析方法的问题,提出了一种等效电路分析方法。将人体组织的通信信道等效成可解析的阻抗电路,通过对电路的分析计算得到人体通信的信道增益。在此基础上,利用有限元仿真软件HFSS建立...针对人体通信技术在可穿戴设备中应用缺少准确的理论分析方法的问题,提出了一种等效电路分析方法。将人体组织的通信信道等效成可解析的阻抗电路,通过对电路的分析计算得到人体通信的信道增益。在此基础上,利用有限元仿真软件HFSS建立了人体通信模型,仿真结果与等效电路分析方法计算的信道增益差距小于1 d B。仿真分析表明:该分析方法能够准确地描述可穿戴设备中人体通信信道的特性,完善了可穿戴设备中人体通信技术的分析方法。展开更多
The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled s...The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.展开更多
文摘针对人体通信技术在可穿戴设备中应用缺少准确的理论分析方法的问题,提出了一种等效电路分析方法。将人体组织的通信信道等效成可解析的阻抗电路,通过对电路的分析计算得到人体通信的信道增益。在此基础上,利用有限元仿真软件HFSS建立了人体通信模型,仿真结果与等效电路分析方法计算的信道增益差距小于1 d B。仿真分析表明:该分析方法能够准确地描述可穿戴设备中人体通信信道的特性,完善了可穿戴设备中人体通信技术的分析方法。
基金Project(51105375)supported by the National Natural Science Foundation of ChinaProject(CSTC2010BB8204)supported by Chongqing Natural Science Foundation,China
文摘The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.