总结了X形变截面橡胶密封圈的特点,基于有限元分析理论,借助软件ANSYS对X形变截面橡胶密封圈进行有限元分析。建立了X形变截面橡胶密封圈有限元模形,比较了X形变截面和X形橡胶密封圈最大综合等效应力情况。结果显示:X形变截面密封圈的...总结了X形变截面橡胶密封圈的特点,基于有限元分析理论,借助软件ANSYS对X形变截面橡胶密封圈进行有限元分析。建立了X形变截面橡胶密封圈有限元模形,比较了X形变截面和X形橡胶密封圈最大综合等效应力情况。结果显示:X形变截面密封圈的应力集中部位主要集中在组合面尖角处,特别是内尖角处更易损坏。在同等条件下,此类X形变截面密封圈比X形密封圈最大等效压力值都大。在压缩率一定条件下,其最大Von M ises应力随油压而增加。在油压一定条件下,最大Von M ises应力并不总随压缩率而增加。展开更多
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze...There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.展开更多
文摘总结了X形变截面橡胶密封圈的特点,基于有限元分析理论,借助软件ANSYS对X形变截面橡胶密封圈进行有限元分析。建立了X形变截面橡胶密封圈有限元模形,比较了X形变截面和X形橡胶密封圈最大综合等效应力情况。结果显示:X形变截面密封圈的应力集中部位主要集中在组合面尖角处,特别是内尖角处更易损坏。在同等条件下,此类X形变截面密封圈比X形密封圈最大等效压力值都大。在压缩率一定条件下,其最大Von M ises应力随油压而增加。在油压一定条件下,最大Von M ises应力并不总随压缩率而增加。
基金Project(2012BAK09B02-05)supported by the National"Twelfth Five"Science and Technology Support Program,ChinaProject(51274250)supported by the National Natural Science Foundation of China+2 种基金Project(2013zzts057)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine safety,CUMT,ChinaProject(2012M511417)supported by China Postdoctoral Science Foundation
文摘There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.