期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于等变图神经网络的拉格朗日粒子流模拟
1
作者 蒋权 黄文清 苟志勇 《计算机应用》 北大核心 2025年第8期2666-2671,共6页
图神经网络(GNN)因能较好解决结构网格的问题,且有较强的组合泛化能力,被越来越多地应用于复杂的流体系统预测。然而,在拉格朗日无网格视角下,经过平移、旋转或翻转变换的流体粒子信息输入GNN会出现不可预测的输出问题。为了解决该问题... 图神经网络(GNN)因能较好解决结构网格的问题,且有较强的组合泛化能力,被越来越多地应用于复杂的流体系统预测。然而,在拉格朗日无网格视角下,经过平移、旋转或翻转变换的流体粒子信息输入GNN会出现不可预测的输出问题。为了解决该问题,提出基于等变图神经网络模拟(EGNS)的方法。首先,将几何向量转换为相对的等变量;其次,通过每一步具有等变性的消息传递使整个神经网络具有等变性,网络输出与输入等变量的空间变换保持一致;最后,在光滑粒子流体动力学(SPH)方法模拟的粒子轨迹里训练得到较优的EGNS模型。在公开流体仿真数据集上的实验结果表明,EGNS具有良好预测效果,相较于图神经网络模拟(GNS)的方法,EGNS在流体粒子运动形态、速度及典型细节的表现力上更准确,预测粒子的位置均方误差(MSE)减小了约16%。 展开更多
关键词 等变图神经网络 等变 光滑粒子动力学 流体粒子 流动预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部