期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于可变形全卷积神经网络的冬小麦自动解译研究 被引量:5
1
作者 李旭青 张秦雪 +3 位作者 安志远 金永涛 张秦浩 丁晖 《农业机械学报》 EI CAS CSCD 北大核心 2020年第9期144-151,共8页
以高分二号遥感影像为研究对象进行冬小麦多元特征的提取,在U-Net模型基础上进行改进,将一种可变形全卷积神经网络(DFCNN)模型引入到遥感影像自动解译领域。为提高网络模型对几何变化特征的提取能力,引入可变形卷积的思想,将可训练的二... 以高分二号遥感影像为研究对象进行冬小麦多元特征的提取,在U-Net模型基础上进行改进,将一种可变形全卷积神经网络(DFCNN)模型引入到遥感影像自动解译领域。为提高网络模型对几何变化特征的提取能力,引入可变形卷积的思想,将可训练的二维偏移量加入到网络中的每个卷积层前,使卷积产生形变,并获得对象级语义信息,从而增强了模型对不同尺寸及空间分布的冬小麦特征的表达。使用DFCNN模型对数据集进行训练及微调,得到最优的网络模型,其像素精度为98.1%,解译时间为0.630 s。采用FCNN模型、U-Net模型及RF算法得到的冬小麦自动解译像素精度分别为89.3%、93.9%、90.0%,说明基于DFCNN模型的冬小麦自动解译精度相对较高,且对复杂的几何变化特征有较好的表达,具有较好的泛化能力。 展开更多
关键词 冬小麦 自动解译 可变形卷积神经网络 GF-2
在线阅读 下载PDF
基于改进YOLOv10n网络模型的芯片封装基板外观缺陷检测
2
作者 马一凡 朱晓春 +3 位作者 王鸣昕 胡彬 彭国峰 朱昌飞 《半导体技术》 北大核心 2025年第8期833-842,859,共11页
为提高芯片封装基板外观缺陷检测的精度并减小其计算量,提出一种基于改进YOLOv10n网络模型的芯片封装基板外观缺陷检测方法。该方法利用星形块(Star_Block)与上下文锚点注意力(CAA)机制将C2f模块重构为C2f_Star_CAA模块,通过增加输入映... 为提高芯片封装基板外观缺陷检测的精度并减小其计算量,提出一种基于改进YOLOv10n网络模型的芯片封装基板外观缺陷检测方法。该方法利用星形块(Star_Block)与上下文锚点注意力(CAA)机制将C2f模块重构为C2f_Star_CAA模块,通过增加输入映射的特征维度并整合远距离上下文信息,有效提升了模型的特征提取能力;引入可变形卷积网络(DCNv3),针对不同尺度缺陷自适应调整卷积核大小,显著增强了模型的多尺度缺陷检测能力;用动态检测头(Dyhead)取代普通检测头,通过动态选择不同作用的注意力机制,强化了对缺陷的位置、尺度及类别的感知,提升了模型的泛化能力。基于自定义构建的芯片封装基板数据集进行实验,结果表明,改进模型的计算量较原始模型减小了7.14%,其精确率(P)、召回率(R)、平均精度均值(mAP@0.5)分别达到了84.9%、86.3%、90.4%,较原始模型分别提高了3.4%、4.9%和3.3%,该方法在减小模型计算量的同时提高了检测精度,验证了其在实时监测场景中的可行性。 展开更多
关键词 封装基板 缺陷检测 YOLOv10n C2f_Star_CAA 可变形卷积网络(DCNv3) 动态检测头(Dyhead)
在线阅读 下载PDF
基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究 被引量:1
3
作者 孙己龙 刘勇 +4 位作者 周黎伟 路鑫 侯小龙 王亚琼 王志丰 《图学学报》 CSCD 北大核心 2024年第5期1050-1061,共12页
为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面... 为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面向衬砌裂缝的检测模型DTD-YOLOv8。首先,通过引入DCNv2对YOLOv8主干卷积网络C2f进行融合以实现模型对裂缝形变特征的准确快速感知,同时采用Transformer Decoder对YOLOv8检测头进行替换以实现端到端框架内完整目标检测流程,从而消除因Anchor-free处理模式所带来的计算消耗。采用自建裂缝数据集对SSD,Faster-RCNN,RT-DETR,YOLOv3,YOLOv5,YOLOv8和DTD-YOLOv8的7种检测模型进行对比验证。结果表明:改进模型F1分数和mAP@50值分别为87.05%和89.58%;其中F1分数相较其他6种模型分别提高了14.16%,7.68%,1.55%,41.36%,8.20%和7.40%;mAP@50分别提高了28.84%,15.47%,1.33%,47.65%,10.14%和10.84%。改进模型参数量仅为RT-DETR的三分之一,检测单张图片的速度为16.01 ms,FPS为65.46帧每秒,对比其他模型检测速度得到提升。该模型在面向运营隧道裂缝检测任务需求时能够表现出高效的性能。 展开更多
关键词 隧道工程 目标检测 第2版可变形卷积网络 Transformer Decoder 衬砌裂缝
在线阅读 下载PDF
融合特征金字塔与可变形卷积的高密度群养猪计数方法 被引量:8
4
作者 王荣 高荣华 +3 位作者 李奇峰 冯璐 白强 马为红 《农业机械学报》 EI CAS CSCD 北大核心 2022年第10期252-260,共9页
针对猪只人工计数方法消耗时间和劳动力,育肥猪较为活跃且喜好聚集,图像中存在大量的高密度区域,导致猪只之间互相粘连、遮挡等问题,基于SOLO v2实例分割算法,提出了一种自然养殖场景下融合多尺度特征金字塔与二代可变形卷积的高密度群... 针对猪只人工计数方法消耗时间和劳动力,育肥猪较为活跃且喜好聚集,图像中存在大量的高密度区域,导致猪只之间互相粘连、遮挡等问题,基于SOLO v2实例分割算法,提出了一种自然养殖场景下融合多尺度特征金字塔与二代可变形卷积的高密度群养猪计数模型。通过优化模型结构来减少计算资源的消耗与占用。将科大讯飞给出的猪只计数的公开数据集划分为猪只分割数据集和猪只盘点测试集,利用猪只分割数据集获得较好的分割模型,然后在猪只盘点测试集中测试盘点准确率,实现猪群分割和猪只计数。实验结果表明,本文提出的高密度猪只计数模型的分割准确率达到96.7%,且模型内存占用量为256 MB,为改进前的2/3,实现了遮挡、粘连和重叠情况下的猪只个体高准确率分割。在含有500幅猪只图像计数测试集中,模型计算猪只数量误差为0时的图像数量为207幅,较改进前提高26%。模型计算猪只数量误差小于2头猪的图像数量占测试图像总数量的97.2%。模型计算猪只数量误差大于3头猪的图像数量占总体图像数量比例仅为1%。最后,对比基于YOLO v5的群养猪计数方法,本文模型具有更优的分割效果和计数准确率,验证了本文方法对群养猪只计数的有效性。因此,本文模型既实现了高密度猪群的精准计数,还通过优化模型结构大大降低了模型对计算设备的依赖,使其适用于养殖场内猪群在线计数。 展开更多
关键词 高密度群养猪 计数模型 实例分割 SOLO v2 多尺度特征金字塔网络 可变形卷积
在线阅读 下载PDF
面向视障人群的室内视觉辅助算法的研究
5
作者 欧阳玉旋 张荣芬 +1 位作者 刘宇红 彭垚潘 《激光技术》 北大核心 2025年第2期166-174,共9页
为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效... 为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效层聚合网络(ELAN),大幅度降低模型参数量;构建了一个全新的高性能轻量化模块(即C2f-全局注意力模块),综合考虑全局和局部特征信息,更好地捕捉节点的上下文信息;然后引入快速空间金字塔池化和幽灵瓶颈(SPPF-GB)模块,对特征进行重组和压缩,以融合不同尺度的特征信息、增强特征的表达能力;最后在头部引入可变形卷积(DCN),增强感受野的表达能力,以捕获目标周围更细粒度的目标结构和背景信息。结果表明,改进后的模型参数量下降了20.33%,模型大小下降了18.70%,平均精度mAP@0.50和mAP@0.50~0.95分别提升了1.2%和3.3%。该网络模型在保证轻量化的同时,检测精度得到了大幅度的提升,更利于室内场景目标检测算法实际应用的部署。 展开更多
关键词 图像处理 轻量化 幽灵瓶颈模块 C2f-全局注意力模块 多尺度特征融合 可变形卷积 YOLOv7-tiny网络模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部