期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多尺度迁移符号动力学熵和支持向量机的轴承诊断方法研究 被引量:1
1
作者 于广伟 闫莉 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第2期344-353,共10页
针对传统数据驱动故障诊断模型在机械系统诊断中存在的泛化能力下降甚至失效的问题,应用迁移学习的思想,提出了基于多尺度迁移符号动力学熵和支持向量机的故障识别算法。采用多尺度符号动力学熵提取故障特征,在此基础上提出基于迁移学... 针对传统数据驱动故障诊断模型在机械系统诊断中存在的泛化能力下降甚至失效的问题,应用迁移学习的思想,提出了基于多尺度迁移符号动力学熵和支持向量机的故障识别算法。采用多尺度符号动力学熵提取故障特征,在此基础上提出基于迁移学习的特征映射技术,使非同分布数据的特征在映射后分布差异减小。对多尺度迁移符号动力学熵方法的参数进行优选,将其输入支持向量机中,进一步提高最终的故障识别率。通过轴承故障实验信号的测试证明,基于多尺度迁移符号动力学熵的滚动轴承诊断方法能够有效提升数据驱动故障诊断模型的泛化能力,实现少量样本下滚动轴承不同故障位置的准确识别。 展开更多
关键词 多尺度迁移符号动力学熵 特征提取 迁移学习 故障诊断 滚动轴承
在线阅读 下载PDF
基于多特征提取与蜣螂算法优化的轴承故障诊断
2
作者 谢锋云 樊秋阳 +3 位作者 孙恩广 王阳 宋成杰 朱海燕 《噪声与振动控制》 北大核心 2025年第4期130-135,230,共7页
针对轴承振动信号易受噪声干扰,单一特征量准确率低的问题,提出一种基于小波包分解(Wavelet Packet Decomposition,WPD)、有效时域特征(绝对平均值、波形指标)、频域特征(均方根频率)以及多尺度符号动力学熵(Multi-scale Symbolic Dynam... 针对轴承振动信号易受噪声干扰,单一特征量准确率低的问题,提出一种基于小波包分解(Wavelet Packet Decomposition,WPD)、有效时域特征(绝对平均值、波形指标)、频域特征(均方根频率)以及多尺度符号动力学熵(Multi-scale Symbolic Dynamic Entropy,MSDE)的轴承故障诊断方法。首先,对轴承振动信号进行小波包分解,提取多频带特征,并根据相关系数筛选最佳分量进行信号重构;其次,提取时域和频域敏感特征,同时计算重构信号的MSDE值,组成多特征向量;最后,将提取的多特征向量输入到蜣螂算法(Dung Beetle Optimizer,DBO)优化的支持向量机(Support Vector Machine,SVM)中识别不同轴承故障类型。结果显示,该方法能够从多方位提取故障特征,相较于单一特征量准确率更高,识别速度更快。 展开更多
关键词 故障诊断 多特征 多尺度符号动力学熵 蜣螂算法
在线阅读 下载PDF
基于MRSSD与MSDE的滑动轴承故障诊断方法 被引量:3
3
作者 王金东 刘著 +2 位作者 赵海洋 张鹏 王智伟 《轴承》 北大核心 2020年第9期50-56,共7页
针对往复压缩机轴承振动信号强烈的非平稳、非线性的特点,提出了一种基于多重共振稀疏分解(MRSSD)与多尺度符号动力学熵(MSDE)相结合的往复压缩机滑动轴承故障诊断方法。首先,设置高、低品质因子的取值范围,求出能表示故障冲击成分的低... 针对往复压缩机轴承振动信号强烈的非平稳、非线性的特点,提出了一种基于多重共振稀疏分解(MRSSD)与多尺度符号动力学熵(MSDE)相结合的往复压缩机滑动轴承故障诊断方法。首先,设置高、低品质因子的取值范围,求出能表示故障冲击成分的低品质因子值,对信号进行共振稀疏分解,形成高、低共振分量;然后,根据高共振分量的峭度值评定分解结果,峭度值小于设定阈值时改变高品质因子值,继续对低共振分量进行共振稀疏分解,峭度值大于设定阈值时终止分解;最后,计算最终所得低共振分量的多尺度符号动力学熵,构造故障特征向量,并利用支持向量机进行故障特征识别。试验结果表明,该方法可以逐步降低干扰成分的影响,有效诊断往复压缩机滑动轴承故障,与基于遗传算法优化品质因子的共振稀疏分解和多尺度排列熵(MPE)相结合的方法相比,故障识别率显著提高。 展开更多
关键词 滑动轴承 故障诊断 压缩机 共振稀疏分解 符号动力学熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部