以蓖麻油、聚乙二醇-1000(PEG-1000)、异佛尔酮二异氰酸酯(IPDI)和端羟基聚二甲基硅氧烷(PDMS)等为反应原料,得到了PDMS改性非离子型水性聚氨酯表面活性剂(WPUS).采用傅立叶变换红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、凝胶渗透色谱(G...以蓖麻油、聚乙二醇-1000(PEG-1000)、异佛尔酮二异氰酸酯(IPDI)和端羟基聚二甲基硅氧烷(PDMS)等为反应原料,得到了PDMS改性非离子型水性聚氨酯表面活性剂(WPUS).采用傅立叶变换红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、凝胶渗透色谱(GPC)、粒径分布测试等对改性前后WPUS的结构进行了表征,并测定了改性前后WPUS的表面张力、临界胶束浓度(CMC)及浊点等性能.结果表明:改性WPUS水溶液的最低表面张力为28.05mN·m-1,浊点为94.0℃,临界胶束浓度为27.5g·L-1;中位粒径为193.48nm,数均分子量为2986,重均分子量为9677,分散系数为3.24.PDMS改性非离子型WPUS的综合性能优异.展开更多
Hyperbranched polymer with alternating ureido and urethano units was prepared by direct polymerizarion of isophorone diisocyanate(IPDI, A 2) with diethanolamine(DEOA, CB 2) in the absence of catalyst. In the reaction,...Hyperbranched polymer with alternating ureido and urethano units was prepared by direct polymerizarion of isophorone diisocyanate(IPDI, A 2) with diethanolamine(DEOA, CB 2) in the absence of catalyst. In the reaction, one isocyanato group of IPDI reacts fast with amino group of DEOA, generating an intermediate with one isocyanato group and two hydroxyl groups. Now the intermediate formed is a new kind of AB 2 type monomer. Further self-condensation of this AB 2 species leads to hyperbranched poly(urea-urethane). The reaction mechanism was characterized with in situ FTIR. Temperature and concentration have great influence on the polymerization process. When the feed ratio of IPDI to DEOA is equal to \{1∶\}1, no gelation is observed if the reaction temperature within initial several hours is lower than 20 ℃. Cross-linking would occur if the reaction temperature during initial period is high. The degree of branching(DB) of the resulting hyperbranched poly(urea-urethane) is 46.5%-48.5%.展开更多
文摘以蓖麻油、聚乙二醇-1000(PEG-1000)、异佛尔酮二异氰酸酯(IPDI)和端羟基聚二甲基硅氧烷(PDMS)等为反应原料,得到了PDMS改性非离子型水性聚氨酯表面活性剂(WPUS).采用傅立叶变换红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、凝胶渗透色谱(GPC)、粒径分布测试等对改性前后WPUS的结构进行了表征,并测定了改性前后WPUS的表面张力、临界胶束浓度(CMC)及浊点等性能.结果表明:改性WPUS水溶液的最低表面张力为28.05mN·m-1,浊点为94.0℃,临界胶束浓度为27.5g·L-1;中位粒径为193.48nm,数均分子量为2986,重均分子量为9677,分散系数为3.24.PDMS改性非离子型WPUS的综合性能优异.
文摘Hyperbranched polymer with alternating ureido and urethano units was prepared by direct polymerizarion of isophorone diisocyanate(IPDI, A 2) with diethanolamine(DEOA, CB 2) in the absence of catalyst. In the reaction, one isocyanato group of IPDI reacts fast with amino group of DEOA, generating an intermediate with one isocyanato group and two hydroxyl groups. Now the intermediate formed is a new kind of AB 2 type monomer. Further self-condensation of this AB 2 species leads to hyperbranched poly(urea-urethane). The reaction mechanism was characterized with in situ FTIR. Temperature and concentration have great influence on the polymerization process. When the feed ratio of IPDI to DEOA is equal to \{1∶\}1, no gelation is observed if the reaction temperature within initial several hours is lower than 20 ℃. Cross-linking would occur if the reaction temperature during initial period is high. The degree of branching(DB) of the resulting hyperbranched poly(urea-urethane) is 46.5%-48.5%.