期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bi-YOLO:一种基于YOLOv8n改进的轻量化目标检测算法 被引量:31
1
作者 刘子洋 徐慧英 +4 位作者 朱信忠 李琛 王泽宇 曹雨淇 戴康佳 《计算机工程与科学》 CSCD 北大核心 2024年第8期1444-1454,共11页
以YOLOv8为代表的单阶段目标检测算法,在骨干网络中有比较明显的优化,但在颈部网络未能高效地融合上下文信息,导致在小目标检测方面存在漏检、错检的问题,并且还存在模型参数量大、计算复杂度高的问题,无法满足端到端的工业部署需求。... 以YOLOv8为代表的单阶段目标检测算法,在骨干网络中有比较明显的优化,但在颈部网络未能高效地融合上下文信息,导致在小目标检测方面存在漏检、错检的问题,并且还存在模型参数量大、计算复杂度高的问题,无法满足端到端的工业部署需求。针对以上问题,引入基于Transformer结构的BiFormer注意力机制,加强对小目标的检测性能,提升算法的精度;引入GSConv模块,在保证算法性能不受到负面影响的前提下减小算法规模。为了平衡BiFormer带来的计算量和参数量的增加,设计了一种名为Bi-YOLO的目标检测算法,以达到轻量化和算法性能的平衡。实验结果表明,Bi-YOLO目标检测算法和YOLOv8n相比,算法精度提高了4.6%,DOTA数据集小目标检测精度提高了2.3%,参数量下降了12.5%。Bi-YOLO有效实现了模型轻量化和性能的平衡,为端到端的工业部署提供了新思路。 展开更多
关键词 YOLOv8 BiFormer 轻量化改进 目标检测 端到端工业部署
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部