期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于稳定竞争自适应重加权采样的光谱分析无标模型传递方法 被引量:15
1
作者 张晓羽 李庆波 张广军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第5期1429-1433,共5页
提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean ... 提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean squared error of prediction,RMSEP),选择重要的、受测样参数影响不敏感的波长变量,能够消除或减少不同仪器或测量条件对样本信息反应差异,提高模型传递效果。此外,在该方法中,光谱变量被压缩、降维,从而使模型传递更稳定。采用该方法对谷物的近红外光谱分析模型在不同仪器之间进行传递研究。结果表明,该方法能消除仪器间的大部分差异,较好地实现模型传递效果。与正交信号校正法(orthogonal signal correction,OSC)、蒙特卡罗结合无用信息变量消除法(Monte Carlo uninformative variable elimination,MCUVE)、竞争自适应重加权采样法(competitive adaptive reweighted sampling,CARS)的比较表明,SCARS不仅在传递精度上能取得比OSC、MCUVE及CARS更好的效果,而且能有效地对光谱数据进行压缩,简化并优化传递过程。 展开更多
关键词 稳定竞争适应加权采样 无标样 模型传递 波长筛选 光谱分析
在线阅读 下载PDF
窗口竞争性自适应重加权采样策略的近红外特征变量选择方法 被引量:12
2
作者 李跑 周骏 +2 位作者 蒋立文 刘霞 杜国荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第5期1428-1432,共5页
通过消除光谱中的冗余信息变量,挑选出代表样品性质的特征变量代替全谱建立定量模型,可以提高近红外分析结果的准确性。基于进化论中适者生存原理的竞争性自适应重加权采样(CARS)算法因具有计算速度快、筛选得到的特征波长少等优点,在... 通过消除光谱中的冗余信息变量,挑选出代表样品性质的特征变量代替全谱建立定量模型,可以提高近红外分析结果的准确性。基于进化论中适者生存原理的竞争性自适应重加权采样(CARS)算法因具有计算速度快、筛选得到的特征波长少等优点,在近红外特征变量筛选方面得到了广泛的应用。然而该方法在计算过程中容易出现校正集和验证集结果不一致情况。这是因为算法过于强调校正集交叉验证结果,且并未考虑相邻变量之间的协同作用。为了建立更加稳健的变量筛选方法,通过结合"窗口"以及CARS算法的优势,提出了一种基于窗口竞争性自适应重加权采样(WCARS)策略的近红外特征变量筛选方法,并将其应用于复杂植物样品近红外光谱与其化学成分含量之间的建模分析。采用WCARS方法可以实现准确定量分析,且通过与竞争性自适应重加权采样(CARS)方法结果相比较, WCARS方法得到的校正集和预测集结果一致,在一定程度上减少了过拟合问题的出现。该策略能有效增强特征变量选择的稳健性,提高了定量模型的可信度,具有一定的应用价值。 展开更多
关键词 近红外光谱仪 化学计量学 窗口竞争性自适应加权采样
在线阅读 下载PDF
基于CARS和1D-CNN联合的XRF土壤重金属超标分析方法研究 被引量:5
3
作者 杨婉琪 李智琪 +2 位作者 李福生 吕树彬 樊佳婧 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期670-674,共5页
随着社会现代化进程的迈进,愈加频繁的人类活动加剧了土壤重金属污染。当土壤中重金属元素含量超过风险筛选值时,会经过食物链摄入人体,过量的重金属累积对人体健康造成损害。筛选出具有重金属污染风险的土壤是治理土壤污染的重要环节... 随着社会现代化进程的迈进,愈加频繁的人类活动加剧了土壤重金属污染。当土壤中重金属元素含量超过风险筛选值时,会经过食物链摄入人体,过量的重金属累积对人体健康造成损害。筛选出具有重金属污染风险的土壤是治理土壤污染的重要环节。采用X射线荧光(XRF)光谱仪获取了59份国家标准土壤样品的光谱数据,然后对其进行小波阈值去噪和迭代离散小波变换本底扣除等预处理;运用基于竞争性自适应重加权采样(CARS)算法对土壤中的重金属元素进行谱线筛选;将筛选后的结果作为模型的输入,通过建立1D-CNN模型预测土壤样本是否具有重金属污染的风险。实验结果显示,通过CARS算法采样后的特征通道数大幅度减少,Ni、Cu、As、Pb元素从原来的2048个特征点分别减少为37、53、37、45个,为原来通道数的1.81%~2.59%。相较于不筛选和连续投影(SPA)筛选方法,结合CARS算法的1D-CNN模型在判断土壤样品是否有Ni、Cu、As、Pb元素污染风险时的准确率分别可以达到96.67%,93.22%,91.67%,88.33%。经CARS筛选,1D-CNN比偏最小二乘回归(PLSR)方法在预测准确性方面有明显优势。提出的CARS-1D-CNN算法在提高模型预测准确率的同时减少了模型的计算量,对于XRF光谱土壤重金属元素污染风险筛选具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 金属 竞争性自适应加权采样 一维卷积神经网络
在线阅读 下载PDF
紫外-荧光特征级融合结合CARS-BO-LSSVM的水质COD检测方法
4
作者 郑培超 李成林 +5 位作者 王金梅 杨琴 曾金锐 吕强 阮伟 何浩楠 《中国测试》 北大核心 2025年第4期91-99,共9页
化学需氧量(COD)是表征水体中有机物含量的重要指标。使用基于不同光谱法的算法模型可以实现地表水COD的快速准确检测,针对紫外吸收光谱法和激光诱导荧光光谱法在测量精度上的不足,提出基于紫外-荧光特征级融合的光谱检测方法。将采集... 化学需氧量(COD)是表征水体中有机物含量的重要指标。使用基于不同光谱法的算法模型可以实现地表水COD的快速准确检测,针对紫外吸收光谱法和激光诱导荧光光谱法在测量精度上的不足,提出基于紫外-荧光特征级融合的光谱检测方法。将采集的实际水样经标准化学法得到COD理化值,以氘卤灯作为紫外-可见光源和以405 nm单波长半导体激光器作为激发光源,采用自主搭建的光谱系统采集水样的紫外吸收光谱和荧光发射光谱。选择Savitzky-Golay滤波对光谱去噪平滑,由竞争性自适应重加权采样(CARS)对光谱进行特征提取,并与主成分分析、连续投影算法对比,以贝叶斯优化的最小二乘支持向量(BO-LSSVM)算法作为建模方法,分别建立基于紫外吸收光谱法、激光诱导荧光光谱法和紫外-荧光特征级融合法的预测模型。结果表明:采用紫外-荧光特征级融合法的预测模型性能优于单一光谱法,提出的基于紫外-荧光特征级融合结合CARS-BO-LSSVM模型在噪声容限和预测精度方面优于其他模型,训练集R2为0.9371、RMSE为0.2726 mg·L^(–1)、MRE为9.99%,测试集R2为0.9377、RMSE为0.2578 mg·L^(–1)、MRE为7.68%。该方法对水质光谱的非线性分析具有良好的泛化性和鲁棒性,可为水质COD的快速检测提供可靠的参考价值和研究思路。 展开更多
关键词 化学需氧量 激光诱导荧光 特征级数据融合 竞争性自适应加权采样
在线阅读 下载PDF
联合FOD-sCARS的土壤有机质高光谱机器学习估测模型
5
作者 吴梦红 窦森 +5 位作者 林楠 姜然哲 陈思 李佳璇 付佳伟 梅显军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期204-212,共9页
土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建... 土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建立SOM估测模型是现在较为合理有效的方法。为探索解决目前高光谱遥感影像建立SOM含量估测模型存在光谱数据冗余、光谱数据特征提取精度低、小样本模型泛化能力不强的问题,选择位于青海省湟中县的研究区,共采集67个土壤样本。获取资源1号02D(ZY1-02D)高光谱遥感影像并进行预处理得到样点像元光谱数据,采用分数阶微分变换(FOD)方法挖掘与SOM含量具有响应关系的敏感波段,以0.2为一个步长,利用相关性阈值法对比分析不同阶次微分处理数据挖掘能力;运用稳定性竞争性自适应重加权采样算法(sCARS)去除高光谱冗余数据获取建模特征波段,选择随机森林(RF)、极端梯度提升树、极限学习机和岭回归机器学习作为建模算法,以全波段和特征波段光谱数据分别作为模型输入变量构建SOM估测模型进行高光谱反演研究工作;最后根据最优特征变量和建模算法,基于ZY1-02D遥感影像进行了SOM空间分布制图。结果表明:采用FOD变换相比整数阶可以大大提高波段与SOM含量间的相关性,挖掘出更多细微的与SOM含量产生响应关系的光谱波段,其中0.8阶微分变换效果最优,较原始波段相比相关系数最大值提高了0.546;相较于全波段光谱数据,采用sCARS特征提取方法获取特征波段构建模型的估测精度得到较大提升,说明sCARS可以有效提升建模数据的质量,提升模型预测精度。建模算法中RF表现最优,R_(p)^(2)(模型决定系数)达到0.766,RPD达到1.86,较全波段建模结果R_(p)^(2)提升约7.58%;基于FOD-sCARS和RF实现了区域SOM含量估测制图。研究进一步验证利用星载高光谱遥感影像是实现区域SOM估测制图的可靠途径,研究结果可为估测区域SOM含量提供新思路,为利用星载高光谱遥感影像绘制SOM含量空间分布图提供了数据支持。 展开更多
关键词 高光谱遥感影像 分数阶微分变换 稳定性竞争性自适应加权采样算法 土壤有机质 随机森林
在线阅读 下载PDF
基于分数阶微分的猕猴桃叶片叶绿素含量估算
6
作者 唐国强 刘梦云 +2 位作者 蒋丹垚 宋正华 常庆瑞 《江苏农业学报》 北大核心 2025年第2期335-344,共10页
叶片叶绿素含量是表征植被生长状态的重要生理生化参数,传统的叶绿素含量测定方法操作复杂且会破坏叶片组织结构,对植物造成不可逆的损伤。通过构建高精度叶绿素反演模型,可以实现对猕猴桃叶片叶绿素含量的实时无损监测。本研究采集了... 叶片叶绿素含量是表征植被生长状态的重要生理生化参数,传统的叶绿素含量测定方法操作复杂且会破坏叶片组织结构,对植物造成不可逆的损伤。通过构建高精度叶绿素反演模型,可以实现对猕猴桃叶片叶绿素含量的实时无损监测。本研究采集了猕猴桃冠层的高光谱数据,并同步测定了叶片叶绿素相对含量(SPAD值)。通过对原始光谱进行分数阶微分变换(阶数为0~2,步长为0.2),结合竞争自适应重加权采样算法(CARS)筛选得到敏感波段。分别基于原始波段和敏感波段训练随机森林模型(RF)、支持向量机模型(SVR)和极限学习机模型(ELM)。结果表明,分数阶微分变换显著提高了光谱反射率与猕猴桃叶片叶绿素含量的相关性,CARS算法提升了模型精度。光谱反射率经过1.8阶微分处理后,采用CARS算法筛选出敏感波段,利用这些敏感波段训练随机森林模型,取得了最佳效果。训练后的随机森林模型在验证集上决定系数(R^(2))达到0.93,均方根误差(RMSE)为2.56,相对分析误差(RPD)为3.89。该研究结果可为猕猴桃叶片叶绿素含量的高精度估算提供理论依据和技术参考,对猕猴桃生长监测和精准农业管理具有重要意义。 展开更多
关键词 猕猴桃 叶绿素含量 高光谱 分数阶微分变换 竞争适应加权采样
在线阅读 下载PDF
基于CA/SPA-CARS算法的小麦条锈病特征波段优选与监测模型构建
7
作者 谷玲霄 方涛 +4 位作者 杜林丹 吴喜芳 李长春 连增增 岳哲 《农业机械学报》 北大核心 2025年第6期487-498,共12页
作物病害会严重制约作物产量和品质,传统的病害监测方法效率低且易受主观因素影响。高光谱遥感技术以其高光谱分辨率和客观真实性在作物病害监测中展现出重要潜力。本文利用多生育期冬小麦地面高光谱及田间病情指数(Disease index,DI),... 作物病害会严重制约作物产量和品质,传统的病害监测方法效率低且易受主观因素影响。高光谱遥感技术以其高光谱分辨率和客观真实性在作物病害监测中展现出重要潜力。本文利用多生育期冬小麦地面高光谱及田间病情指数(Disease index,DI),基于相关性分析(Correlation analysis,CA)和连续投影法(Successive projections algorithm,SPA)分别对光谱数据进行光谱特征降维,通过构建最优参数的竞争性自适应重加权采样(Competitive adaptive reweighted sampling,CARS)算法优选小麦条锈病敏感波段,最后利用偏最小二乘回归(Partial least squares regression,PLSR)、反向传播神经网络(Back propagation neural network,BPNN)和极限学习机(Extreme learning machine,ELM)算法建立基于特征光谱的病情指数模型,比较不同建模方法的建模效果,实现小麦条锈病监测。研究结果表明,不同生育期均显示小麦条锈病敏感特征波段多集中于近红外和短波红外波段,其中挑旗期为842、850、858 nm,灌浆期为947、953、1275、1277、1590、1663、1665 nm;对比不同建模算法,PLSR模型表现最佳,满足小麦早期病虫害监测需求,且在病害中期显示更明显特征;挑旗期和灌浆期分别以SPA-CARS-MCX和CA-CARS-MSC数据构建PLSR模型预测效果最优,验证集R2分别为0.782和0.861,RMSE分别为0.022和0.094,RPD分别为2.140和2.687。本文构建算法能够为不同生育期小麦条锈病监测提供参考。 展开更多
关键词 小麦条锈病 光谱变换 特征波段选择 相关性分析 连续投影法 竞争性自适应加权采样
在线阅读 下载PDF
基于XRF的CARS-GAF-MobileNet铝合金牌号分类研究
8
作者 吕树彬 万优 +1 位作者 李福生 杨婉琪 《分析测试学报》 北大核心 2025年第6期1161-1168,共8页
铝合金以其卓越的特性在工业上得到广泛应用,对铝合金的牌号进行准确分类能够进一步推动制造业等领域的发展。该文提出了一种新的铝合金X射线荧光(XRF)光谱分类框架CARS-GAF-MobileNet(CGM)。首先,采用XRF光谱仪获取铝合金样本的XRF光... 铝合金以其卓越的特性在工业上得到广泛应用,对铝合金的牌号进行准确分类能够进一步推动制造业等领域的发展。该文提出了一种新的铝合金X射线荧光(XRF)光谱分类框架CARS-GAF-MobileNet(CGM)。首先,采用XRF光谱仪获取铝合金样本的XRF光谱数据;然后,提出一种基于多元素校正的竞争性自适应重加权采样(CARS)算法对数据进行变量筛选;随后,使用格拉姆角场(GAF)将一维光谱转换为二维光谱图像,并通过色彩映射将灰度图转为RGB图;最后,将转换后的二维光谱图作为Mobilenet-V3模型的输入,对铝合金样本进行分类。实验结果表明,所提出的CGM框架的最终分类准确率可以达到94.3%,能够对不同牌号的铝合金样品进行精确识别。CGM是一种具有潜力的铝合金牌号识别框架,对铝合金分类问题具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光 铝合金分类 格拉姆角场 竞争性自适应加权采样 深度学习
在线阅读 下载PDF
ZY1-02DAHSI影像归一化阴影植被指数NSVI的波段选择及其构建
9
作者 许章华 陈玲燕 +6 位作者 项颂阳 邓西鹏 李一帆 俞辉 贺安琪 李增禄 郭孝玉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2626-2637,共12页
高光谱影像具有连续的地物光谱信息,在阴影检测方面具有巨大的潜力,而波段冗余度高需进行波段优选。归一化阴影植被指数(NSVI)能够扩大光谱差异,在高光谱影像中应用NSVI将更有效地识别阴影。资源一号02D卫星是我国首颗自主研发并成功运... 高光谱影像具有连续的地物光谱信息,在阴影检测方面具有巨大的潜力,而波段冗余度高需进行波段优选。归一化阴影植被指数(NSVI)能够扩大光谱差异,在高光谱影像中应用NSVI将更有效地识别阴影。资源一号02D卫星是我国首颗自主研发并成功运行的高光谱业务卫星,数据信噪比大、覆盖能力强,对该高光谱影像进行准确的阴影检测具有重要意义。以ZY1-02DAHSI影像为试验数据,提取并分析明亮区植被、阴影区植被及水体的光谱反射率;结合竞争自适应重加权采样(CARS)和连续投影算法(SPA)筛选能够有效区分典型地物的主要波段,综合考虑算法的特性进一步选出特征波段构建NSVI;通过步长法确定最佳阈值对影像进行分类,从像元值分布情况、分类精度和光谱增强效果等对比出构建NSVI的最佳波段,并结合不同的阴影指数、波段和影像进行综合评价,验证该方法的意义及普适性。结果表明:波段32和波段73是构建NSVI的最佳波段,分别对应红光波段和近红外波段;不同波段构建的NSVI分类精度均高于90%,由最佳波段构建的NSVI分类精度为94.33%,Kappa系数为0.8328,分类效果最优;NSVI能够增强典型地物间的光谱差异并缓解归一化植被指数的“易饱和”现象,在该影像中因水体累积产生的小波峰有助于提取水体;在ZY1-02DAHSI影像中NSVI的分类效果优于归一化阴影指数和阴影指数,于另一景影像的分类精度也达到93.55%,Kappa系数为0.8167。由算法筛选出的波段具有一定的代表性,最佳波段构建的NSVI在ZY1-02DAHSI影像中具有较好的阴影检测能力,对高光谱影像阴影检测及构建植被指数具有一定的借鉴和参考意义。 展开更多
关键词 归一化阴影植被指数NSVI ZY1-02DAHSI影像 竞争适应加权采样(CARS) 连续投影算法(SPA) 阴影检测
在线阅读 下载PDF
拉曼光谱结合机器学习对植物油的分类鉴别 被引量:2
10
作者 苏东斌 秦嘉桧 李开开 《食品与发酵工业》 CAS CSCD 北大核心 2024年第6期274-281,共8页
该研究采集了六类(38个品牌)常见植物油的551份拉曼光谱,并根据光谱数据分别建立了正交偏最小二乘判别和支持向量机模型,对比了连续投影法和竞争性自适应重加权采样法对模型识别正确率的影响。基于算法改进的偏最小二乘判别模型的总体... 该研究采集了六类(38个品牌)常见植物油的551份拉曼光谱,并根据光谱数据分别建立了正交偏最小二乘判别和支持向量机模型,对比了连续投影法和竞争性自适应重加权采样法对模型识别正确率的影响。基于算法改进的偏最小二乘判别模型的总体预测准确率为82.53%、83.13%,低于基于全光谱数据建立的偏最小二乘判别模型。竞争性自适应重加权采样法结合支持向量机对玉米油、橄榄油、葵花籽油和芝麻油的品牌分类测试集正确率均达到100%;椰子油和花生油的测试集正确率为22.22%、63.64%。两类特征提取算法均可以减少建立分类模型所需的变量数目和计算资源,但以提取后变量建立分类模型可能会导致识别正确率下降。在解决样本间相似度较高的多分类问题时,支持向量机模型优于正交偏最小二乘判别模型。正确率差异可能和生产商所使用的生产工艺以及植物油原料相关。面对案件侦办中品牌种类多样的油脂物证,基于拉曼光谱分析和特征提取算法的支持向量机模型可为可食用植物油的无损快速检验提供一定的参考与借鉴。 展开更多
关键词 植物油 拉曼光谱 机器学习 连续投影法 竞争性自适应加权采样
在线阅读 下载PDF
基于中红外光谱的牛乳中A 2β-酪蛋白检测方法研究 被引量:1
11
作者 杨戬 刘伯扬 +5 位作者 王丹慧 高永亮 赵三军 赵凯 李慧 仪虹伯 《中国乳业》 2024年第11期144-148,156,共6页
[目的]研究基于中红外光谱的牛乳中A2β-酪蛋白检测方法。[方法]进行光谱采集,利用多元散射校正及标准正态化预处理提高光谱信噪比,在竞争自适应重加权算法筛选得到特征变量基础上,建立基于偏最小二乘的定量分析模型。[结果]预处理及变... [目的]研究基于中红外光谱的牛乳中A2β-酪蛋白检测方法。[方法]进行光谱采集,利用多元散射校正及标准正态化预处理提高光谱信噪比,在竞争自适应重加权算法筛选得到特征变量基础上,建立基于偏最小二乘的定量分析模型。[结果]预处理及变量筛选后,训练、预测误差分别达到0.061 g/100 g、0.068 g/100 g,R分别达到0.893、0.875。[结论]中红外光谱方法可用于牛乳中A2β-酪蛋白快速检测,光谱预处理、特征变量提取方法显著提高建模精度,可为牛乳中其他成分的光谱检测方法准确性提供参考。 展开更多
关键词 中红外光谱 A2β-酪蛋白 预处理 竞争适应加权采样
在线阅读 下载PDF
鲸鱼算法改进极限学习机的葡萄酒品质评价研究 被引量:3
12
作者 窦力 郑崴 +1 位作者 李柏秋 李斐 《食品与机械》 CSCD 北大核心 2024年第6期62-68,共7页
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通... [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.9445,GA-ELM的准确率为0.9290,PSO-ELM的准确率为0.9061,传统的ELM方法准确率为0.8177。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。 展开更多
关键词 近红外光谱 极限学习机 鲸鱼优化算法 特征波长 竞争性自适应加权采样
在线阅读 下载PDF
基于高光谱成像技术的糯玉米种子分类研究 被引量:3
13
作者 庄浩轩 魏明生 +2 位作者 王波 赵慕阶 陈化东 《现代农业研究》 2024年第1期51-57,共7页
为了快速、准确、无损地对糯玉米种子分类,采用可见-近红外(400~1000 nm)高光谱成像仪对5种糯玉米种子进行数据采集,使用一阶中心差分联合SG平滑对糯玉米种子的原始光谱数据进行预处理去噪,通过自优化竞争性自适应重加权采样算法筛选出5... 为了快速、准确、无损地对糯玉米种子分类,采用可见-近红外(400~1000 nm)高光谱成像仪对5种糯玉米种子进行数据采集,使用一阶中心差分联合SG平滑对糯玉米种子的原始光谱数据进行预处理去噪,通过自优化竞争性自适应重加权采样算法筛选出56个重要的特征波段,同时采用灰度共生矩阵和Sobel算子提取糯玉米种子的相关性、能量、同致性、相关熵、灰度熵和梯度熵等6种纹理特征,将光谱特征与纹理特征融合后构建支持向量机分类模型,分别用350个训练样本、150个测试样本和50个预测样本对模型进行训练、测试和预测分类,相应得到了准确率为98.50%、95.92%和94.00%的最佳结果,表明利用高光谱成像技术对糯玉米种子分类是可行的。 展开更多
关键词 高光谱成像技术 一阶中心差分 自优化 竞争性自适应加权采样算法 灰度共生矩阵
在线阅读 下载PDF
高光谱技术结合CARS算法预测土壤水分含量 被引量:40
14
作者 于雷 朱亚星 +3 位作者 洪永胜 夏天 刘目兴 周勇 《农业工程学报》 EI CAS CSCD 北大核心 2016年第22期138-145,共8页
高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土... 高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土壤高光谱反射率,经Savitzky-Golay平滑(Savitzky-Golay smoothing,SG)和连续统去除(continuum removal,CR)预处理后,基于竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)方法分别优选出土壤在全部SMC的水分敏感波长变量,确定适用于土壤在全部SMC的共性波长变量,以其为优选变量集,采用偏最小二乘(partial least squares regression,PLSR)回归方法建立模型并进行验证。结果表明,SG和CR预处理后的光谱曲线在450、1 400、1 900、2 200 nm附近吸收峰的形状特征凸显;基于CARS方法对土壤在不同SMC的光谱曲线进行变量优选后,得出优选变量集为443~449、1 408~1 456、1 916~1 943、2 209~2 225 nm;CARS-PLSR模型性能优于全波段PLSR模型,模型预测R2、均方根误差、相对分析误差分别为0.983、0.0144、8.36,不仅提升了预测精度和预测能力,而且降低了变量维度和模型复杂度。该文通过优选土壤水分的敏感波段,有效提高了SMC预测模型的鲁棒性,为快速准确评估农田墒情提供了新途径,为开发田间SMC测定传感器提供了理论依据。 展开更多
关键词 土壤水分 算法 模型 高光谱 竞争适应重加权采样算法 变量优选 潮土
在线阅读 下载PDF
同步荧光光谱结合CARS变量优选预测猪肉中四环素残留含量 被引量:8
15
作者 肖海斌 赵进辉 +2 位作者 袁海超 洪茜 刘木华 《光学精密工程》 EI CAS CSCD 北大核心 2013年第10期2513-2519,共7页
为快速检测猪肉中的四环素残留含量,采用同步荧光法结合竞争适应重加权采样(CARS)变量优选法建立了预测猪肉中四环素残留含量的支持向量回归(SVR)模型。从样本的三维同步荧光光谱中确定了最佳波长差为65nm,采用CARS方法从中挑选出与四... 为快速检测猪肉中的四环素残留含量,采用同步荧光法结合竞争适应重加权采样(CARS)变量优选法建立了预测猪肉中四环素残留含量的支持向量回归(SVR)模型。从样本的三维同步荧光光谱中确定了最佳波长差为65nm,采用CARS方法从中挑选出与四环素相关的特征波长变量,并与连续投影算法(SPA)及遗传算法(GA)进行比较。最后,应用SVR算法对优选出的16个波长变量建立猪肉中四环素含量的预测模型。分析发现,多元散射校正(MSC)光谱预处理后的CARS方法优于SPA及GA变量选择方法,可以有效地筛选出全光谱中的特征波长变量。CARS-SVR建立的四环素预测模型优于原始光谱的SVR模型,其预测集的决定系数(R2)和预测均方根误差(RMSEP)分别为0.961 2和10.94mg/kg。研究结果表明,采用同步荧光法结合CARS-SVR模型可以预测猪肉中的四环素残留含量,且CARS-SVR能有效地简化模型并提高预测精度。 展开更多
关键词 同步荧光光谱 竞争适应重加权采样(CARS) 支持向量回归 四环素 猪肉
在线阅读 下载PDF
小波变换耦合CARS算法提高土壤水分含量高光谱反演精度 被引量:21
16
作者 蔡亮红 丁建丽 《农业工程学报》 EI CAS CSCD 北大核心 2017年第16期144-151,共8页
为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(compe... 为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)滤除冗余变量,筛选出与SMC相关性较好的波长变量,并叠加各层特征光谱的优选波长变量作为最优变量集,用偏最小二乘回归(partial least squares regression,PLSR)构建土壤水分含量预测模型并进行分析。结果显示:1)小波分解过程中,土壤反射率与SMC的相关性不断增强,到小波变换第6层分解(L6)处达到最高,因此小波变换最大分解层数为6层分解;2)通过对土样进行WT-CARS耦合算法筛选出变量,得出的最优变量集包括400~500、1 320~1 461、1 851~1 961、2 125~2 268 nm区域之间共131个波长变量;3)相对于全波段预测模型,各层特征光谱的CARS优选变量预测模型的精度均高,并且基于最优变量集的预测模型的精度最高,该模型的建模集均方根误差0.021、建模集决定系数0.721、预测集均方根误差0.028、预测集决定系数0.924、相对分析误差2.607。说明WT-CARS耦合算法使其在建立模型时尽可能少地损失光谱细节、较为彻底的去除噪声,同时还能对无信息变量进行有效去除,为该研究区SMC的预测提供新的思路。 展开更多
关键词 土壤 含水率 光谱分析 小波变换 竞争适应重加权采样算法 变量优选
在线阅读 下载PDF
基于连续小波变换耦合CARS算法的冬小麦冠层叶片含水量估算 被引量:8
17
作者 李铠 常庆瑞 +4 位作者 陈倩 陈晓凯 莫海洋 张耀丹 郑智康 《麦类作物学报》 CAS CSCD 北大核心 2023年第2期251-258,共8页
为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析... 为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析;并通过竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)过滤冗余变量,筛选与叶片含水量相关性较好的波长变量,作为优选变量集;通过粒子群算法(particle swarm optimization,PSO)对BP神经网络模型进行优化,构建冠层叶片含水量预测模型并进行分析。结果表明,从尺度1到尺度10,小波系数与冬小麦叶片含水量整体相关性先升后降,中等分解尺度在光谱波段去除噪声、提高相关性方面最佳;基于CARS优选变量集所建的两种模型中,BP-PSO模型预测能力明显优于普通BP神经网络模型,其决定系数可达0.82,均方根误差为0.86%,相对误差为0.82%。这说明CWT-CARS-BP-PSO耦合算法在提升相关性、过滤冗余波段、提高模型预测精度方面效果显著,可用于冬小麦叶片含水量预测。 展开更多
关键词 冬小麦 叶片含水量 高光谱 连续小波变换 竞争适应重加权采样 粒子群算法PSO优化BP神经网络
在线阅读 下载PDF
基于近红外光谱的沼液挥发性脂肪酸含量快速检测 被引量:6
18
作者 刘金明 郭坤林 +3 位作者 甄峰 张鸿琼 李文哲 许永花 《农业工程学报》 EI CAS CSCD 北大核心 2020年第18期188-196,共9页
挥发性脂肪酸(Volatile Fatty Acids,VFA)作为厌氧发酵过程的重要中间产物,其在厌氧反应器中的累积能够反映出产甲烷菌的不活跃状态或厌氧发酵条件的恶化。为了实现对农牧废弃物厌氧发酵进行过程分析和状态监控,将近红外光谱(Near Infra... 挥发性脂肪酸(Volatile Fatty Acids,VFA)作为厌氧发酵过程的重要中间产物,其在厌氧反应器中的累积能够反映出产甲烷菌的不活跃状态或厌氧发酵条件的恶化。为了实现对农牧废弃物厌氧发酵进行过程分析和状态监控,将近红外光谱(Near Infrared Spectroscopy,NIRS)与偏最小二乘(Partial Least Squares,PLS)相结合构建玉米秸秆和畜禽粪便厌氧发酵液乙酸、丙酸和总酸含量快速检测模型。将竞争自适应重加权采样法(Competitive Adaptive Reweighted Sampling,CARS)与遗传模拟退火(Genetic Simulated Annealing,GSA)算法相结合构建CARS-GSA算法对沼液中的乙酸、丙酸和总酸进行特征波长优选,原始光谱数据1557个波长点经预处理和波长优选后,得到乙酸、丙酸和总酸特征波长变量分别为135、101和245个,建立的回归模型验证决定系数分别为0.988、0.923和0.886,预测均方根误差(Root Mean Squared Error of Prediction,RMSEP)分别为0.111、0.120和0.727,相对分析误差分别为9.685、3.685和3.484,与全谱建模相比RMSEP分别减少了17.78%、15.49%和1.22%,能够满足农牧废弃物厌氧发酵过程发酵液中乙酸和丙酸含量的快速检测需求,基本满足总酸的检测需求。结果表明,通过构建CARS-GSA算法优选乙酸、丙酸和总酸的敏感波长变量,参与建模的波长点数量显著减少,有效降低了变量维度和模型复杂度,提升了回归模型检测精度和预测能力,为快速准确检测沼液VFA提供了新途径。 展开更多
关键词 厌氧发酵 挥发性脂肪酸 快速检测 近红外光谱 偏最小二乘 遗传模拟退火算法 竞争适应加权采样
在线阅读 下载PDF
食用植物油中反式脂肪酸含量的激光拉曼光谱检测 被引量:13
19
作者 蒋雪松 莫欣欣 +1 位作者 孙通 胡栋 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第12期3821-3825,共5页
油脂中的反式脂肪酸(TFA)有害人们的身体健康,有必要对其含量进行监测。共收集各类食用植物油样本79个,涉及9个品种和27个品牌,分配到校正集和预测集的样本数分别为53个和26个。采用QE65000拉曼光谱仪采集79个样本的拉曼光谱,利用自适... 油脂中的反式脂肪酸(TFA)有害人们的身体健康,有必要对其含量进行监测。共收集各类食用植物油样本79个,涉及9个品种和27个品牌,分配到校正集和预测集的样本数分别为53个和26个。采用QE65000拉曼光谱仪采集79个样本的拉曼光谱,利用自适应迭代惩罚最小二乘法去除样本拉曼光谱的荧光背景;在此基础上,采用多种归一化方法对样本拉曼光谱进行处理,并对拉曼光谱的建模波数范围进行初选;再利用竞争性自适应重加权采样(CARS)方法筛选与食用植物油TFA含量相关的光谱变量,并应用偏最小二乘(PLS)回归将食用植物油TFA的特征变量光谱强度与气相色谱测定的TFA真实含量进行关联,建立食用植物油中TFA含量的定量预测模型。研究结果表明,多种归一化方法中,有4种归一化方法均能提高PLS定量预测模型的性能,其中Area normalization方法的效果最优;经建模波数范围初选,波数范围由686~2301 cm^-1缩减为737~1787 cm^-1,确定较优的建模波数范围为737~1787 cm^-1;经CARS方法筛选,共有31个光谱变量被选择,其选择的光谱变量主要分布在1265,1303,1442及1658 cm^-1拉曼振动峰附近,且974 cm^-1拉曼振动峰两侧均有光谱变量被选择;此外,CARS方法的PLS建模结果优于常用的无信息变量消除及连续投影算法。由此可知,激光拉曼光谱技术结合化学计量学方法检测食用植物油中的TFA含量是可行的。归一化方法、建模波数范围初选及竞争性自适应重加权采样(CARS)方法能有效提高TFA定量预测模型的预测精度和稳定性,优化后的TFA定量预测模型的校正集及预测集的相关系数和均方根误差分别为0.949,0.953和0.188%,0.191%。与未优化的预测模型相比,预测均方根误差由0.361%下降为0.191%,下降幅度为47.1%;建模所用的变量数由683个下降为31个,仅占原变量数的4.54%。 展开更多
关键词 拉曼光谱 反式脂肪酸 食用植物油 竞争性自适应加权采样
在线阅读 下载PDF
稻谷脂肪近红外光谱特征筛选及检测模型构建 被引量:2
20
作者 李路 黄汉英 +2 位作者 李毅 赵思明 杨素仙 《食品与发酵工业》 CAS CSCD 北大核心 2018年第2期87-91,共5页
应用近红外光谱技术对稻谷脂肪含量进行检测。采集了90个稻谷样本的漫反射近红外光谱,运用Kennard-Stone法选取校正集及预测集样本。对比研究了归一化、一阶导、二阶导、一阶导+归一化等4种预处理方法对模型性能的影响,确定一阶导为最... 应用近红外光谱技术对稻谷脂肪含量进行检测。采集了90个稻谷样本的漫反射近红外光谱,运用Kennard-Stone法选取校正集及预测集样本。对比研究了归一化、一阶导、二阶导、一阶导+归一化等4种预处理方法对模型性能的影响,确定一阶导为最佳预处理方法。运用竞争性自适应重加权采样技术筛选出与稻谷脂肪含量检测相关的特征波长,再用多元线性回归对特征波长进行优选,最终得到30个特征波长。其中最典型的特征波长为1 343、1 489和1 583 nm,反映了稻谷脂肪中大量存在的—CH和—OH基团。所建立的基于近红外光谱分析技术的稻谷脂肪含量检测模型具的决定系数为0.958 9,定标标准差RMSEC为0.223 6,相对偏差为5.53%。 展开更多
关键词 近红外光谱 稻谷 脂肪 竞争性自适应加权采样 多元线性回归
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部