期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于高光谱技术的五味清浊制剂快速无损检测方法研究 被引量:1
1
作者 戴胜云 吴东雪 +5 位作者 黄瑞 刘杰 乔菲 魏锋 连超杰 郑健 《中国现代中药》 CAS 2024年第10期1790-1798,共9页
目的:采用高光谱技术结合化学计量学方法对蒙古族药五味清浊制剂中胡椒碱、桂皮醛和羟基红花黄色素A进行含量测定,实现快速、无损、全面的五味清浊制剂质量评估。方法:选取2023年度国家药品抽检计划抽检的五味清浊制剂样品33批次(五味... 目的:采用高光谱技术结合化学计量学方法对蒙古族药五味清浊制剂中胡椒碱、桂皮醛和羟基红花黄色素A进行含量测定,实现快速、无损、全面的五味清浊制剂质量评估。方法:选取2023年度国家药品抽检计划抽检的五味清浊制剂样品33批次(五味清浊散11批次、五味清浊丸22批次),采集其高光谱数据;对比多元散射校正、基线校正、标准正态变换、光谱转化、矢量归一化、光谱降噪、卷积平滑(9)结合一阶导数、卷积平滑(11)结合一阶导数、卷积平滑(9)结合二阶导数和卷积平滑(11)结合二阶导数10种光谱预处理方法,蒙特卡罗无信息变量消除法、竞争性自适应重加权采样法(CARS)2种变量筛选方法,偏最小二乘法、最小二乘法-支持向量机(LS-SVM)2种建模方法用于胡椒碱、桂皮醛和羟基红花黄色素A含量与高光谱数据定量校正模型时的性能。结果:采用CARS建立的胡椒碱和桂皮醛的LS-SVM模型预测能力全局最优,模型的相对预测偏差(RPD)分别为9.2、6.0,验证集相关系数(rpre)分别为0.9935、0.9852,说明模型验证集与测定值具有良好的非线性关系,模型预测效果良好。采用羟基红花黄色素A原始光谱建立的LS-SVM模型性能全局最优,RPD和rpre分别为3.7、0.9762。结论:采用高光谱技术结合化学计量学方法可以快速测定五味清浊制剂中胡椒碱、桂皮醛和羟基红花黄色素A含量,方法操作简便,可为五味清浊制剂的质量控制提供参考。 展开更多
关键词 蒙古族药 五味清浊制剂 高光谱 变量筛选 蒙特卡罗无信息变量消除法 竞争性自适应加权采样法 偏最小二乘法 最小二乘法-支持向量机
在线阅读 下载PDF
拉曼光谱结合机器学习对植物油的分类鉴别 被引量:1
2
作者 苏东斌 秦嘉桧 李开开 《食品与发酵工业》 CAS CSCD 北大核心 2024年第6期274-281,共8页
该研究采集了六类(38个品牌)常见植物油的551份拉曼光谱,并根据光谱数据分别建立了正交偏最小二乘判别和支持向量机模型,对比了连续投影法和竞争性自适应重加权采样法对模型识别正确率的影响。基于算法改进的偏最小二乘判别模型的总体... 该研究采集了六类(38个品牌)常见植物油的551份拉曼光谱,并根据光谱数据分别建立了正交偏最小二乘判别和支持向量机模型,对比了连续投影法和竞争性自适应重加权采样法对模型识别正确率的影响。基于算法改进的偏最小二乘判别模型的总体预测准确率为82.53%、83.13%,低于基于全光谱数据建立的偏最小二乘判别模型。竞争性自适应重加权采样法结合支持向量机对玉米油、橄榄油、葵花籽油和芝麻油的品牌分类测试集正确率均达到100%;椰子油和花生油的测试集正确率为22.22%、63.64%。两类特征提取算法均可以减少建立分类模型所需的变量数目和计算资源,但以提取后变量建立分类模型可能会导致识别正确率下降。在解决样本间相似度较高的多分类问题时,支持向量机模型优于正交偏最小二乘判别模型。正确率差异可能和生产商所使用的生产工艺以及植物油原料相关。面对案件侦办中品牌种类多样的油脂物证,基于拉曼光谱分析和特征提取算法的支持向量机模型可为可食用植物油的无损快速检验提供一定的参考与借鉴。 展开更多
关键词 植物油 拉曼光谱 机器学习 连续投影法 竞争性自适应加权采样法
在线阅读 下载PDF
鲸鱼算法改进极限学习机的葡萄酒品质评价研究 被引量:1
3
作者 窦力 郑崴 +1 位作者 李柏秋 李斐 《食品与机械》 CSCD 北大核心 2024年第6期62-68,共7页
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通... [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.9445,GA-ELM的准确率为0.9290,PSO-ELM的准确率为0.9061,传统的ELM方法准确率为0.8177。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。 展开更多
关键词 近红外光谱 极限学习机 鲸鱼优化算法 特征波长 竞争性自适应加权采样法
在线阅读 下载PDF
近红外光谱结合化学计量学方法快速检测蓝莓可溶性固形物和维生素C含量 被引量:2
4
作者 王甜甜 冯国红 朱玉杰 《食品工业科技》 CAS 北大核心 2023年第16期297-305,共9页
采用近红外光谱技术,对不同贮藏时间的蓝莓营养成分进行定量分析,以寻求其化学成分与近红外光谱数据的相关性,实现利用光谱技术对蓝莓营养成分的无损检测。对获取的近红外光谱数据,运用偏最小二乘回归(Partial Least Square Regression,... 采用近红外光谱技术,对不同贮藏时间的蓝莓营养成分进行定量分析,以寻求其化学成分与近红外光谱数据的相关性,实现利用光谱技术对蓝莓营养成分的无损检测。对获取的近红外光谱数据,运用偏最小二乘回归(Partial Least Square Regression,PLSR)和支持向量回归(Support Vector Regression,SVR)两种机器学习算法预测蓝莓可溶性固形物(Soluble Solids Content,SSC)和维生素C(Vitamin C,V_(C))含量。为增加预测精度,采用一阶导数(First Derivative,1-DER)、二阶导数(Second Derivative,2-DER)、标准正态变换(Standard Normal Variate Transform,SNV)、多元散射校正(Multiplicative Scatter Correction,MSC)、Savitzky-Golay平滑(S-G)等一种或几种方法组合对光谱数据进行预处理,比较分析最佳的预处理方式;采用竞争适应性重加权采样法(Competitive Adaptive Reweighted Sampling,CARS)和随机蛙跳算法(Random Frog,RF)及两种算法组合对光谱波长进行降维处理。结果表明,降维后的SSC波长变量分别降到了全光谱变量的1.7%、4.3%和5.6%,V_(C)波长变量分别降到了全光谱变量的2.5%、2.9%、4.8%。在筛选后的光谱波长变量的基础上,采用PLSR建立蓝莓近红外光谱与SSC和V_(C)含量的预测模型。对比发现CARS结合RF算法筛选出的波长变量预测效果更好,模型校正相关系数分别为0.9001、0.8707,校正均方根误差分别为0.8234、2.9429,预测相关系数分别为0.8424、0.8350,预测均方根误差分别为0.9613、2.9482。为排除模型性能对预测结果的影响,建立SVR模型将预测结果进行对比,同样发现CARS结合RF算法的预测效果更佳,模型校正相关系数分别为0.8702、0.8503,校正均方根误差分别为0.9549、3.2431,预测相关系数分别为0.8269、0.8183,预测均方根误差分别为0.8769、2.8818。本研究为蓝莓营养品质监测提供了模型基础,且选择特征波长的方法可以为更多果蔬营养物质预测模型提供参考。 展开更多
关键词 近红外光谱 竞争适应性重加权采样法 随机蛙跳 偏最小二乘回归 支持向量回归
在线阅读 下载PDF
CARS结合PLS-LDA法识别奶牛饲料中土霉素的可行性研究 被引量:7
5
作者 刘星 单杨 李高阳 《包装与食品机械》 CAS 2012年第4期1-4,共4页
收集了一年内不同月份不同种类的纯奶牛精补料20个,制备土霉素含量不同的掺假奶牛精补料100个,在全光谱范围内对样品进行近红外透反射光谱扫描,利用CARS法对光谱数据进行前处理,采用偏最小二乘-线性判别分析(PLS-LDA)法来建立判别模型... 收集了一年内不同月份不同种类的纯奶牛精补料20个,制备土霉素含量不同的掺假奶牛精补料100个,在全光谱范围内对样品进行近红外透反射光谱扫描,利用CARS法对光谱数据进行前处理,采用偏最小二乘-线性判别分析(PLS-LDA)法来建立判别模型。建立的PLS-LDA模型的交互验证最小错误率为0.0729,模型错分率为0,模型预测错误率为0.0417。说明利用近红外光谱技术建立定性判别模型来检测奶牛饲料中是否掺有土霉素是可行的。 展开更多
关键词 奶牛饲料 土霉素 竞争性自适应加权采样法 偏最小二乘-线性判别分析法
在线阅读 下载PDF
基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法 被引量:20
6
作者 许锋 付丹丹 +2 位作者 王巧华 肖壮 王彬 《食品科学》 EI CAS CSCD 北大核心 2018年第8期149-154,共6页
利用USB2000+微型光谱仪采集红提400~1 000 nm透过率光谱数据,并通过理化分析测得糖度和酸度值;利用Savit Zky-Golay卷积平滑法对原始光谱进行预处理,结合蒙特卡罗交叉验证法剔除奇异点,再利用竞争自适应重加权采样法降维,最终建立随... 利用USB2000+微型光谱仪采集红提400~1 000 nm透过率光谱数据,并通过理化分析测得糖度和酸度值;利用Savit Zky-Golay卷积平滑法对原始光谱进行预处理,结合蒙特卡罗交叉验证法剔除奇异点,再利用竞争自适应重加权采样法降维,最终建立随机森林预测模型。糖度预测模型的校正集相关系数和均方根误差分别为0.955 8和0.315 8;验证集相关系数和均方根误差为0.956 8和0.318 5。酸度预测模型的校正集相关系数和均方根误差分别是0.945 6和0.300 1;验证集相关系数和均方根误差为0.940 5和0.311 2。结果表明,该方法适用于红提糖度和酸度的快速无损检测,且具有较高的准确度。 展开更多
关键词 可见-近红外光谱 蒙特卡罗交叉验证法 竞争适应加权采样法 红提 糖度 酸度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部