提出基于恢复力约束的分布式储能优化规划方法,以保证重要用户的恢复力为前提条件,采用双层耦合规划模型。内层模型在满足电网运行的潮流约束下,灵活地控制重要用户侧分布式储能参与需求侧响应,实现用电成本与动作频次最小的目标,采用...提出基于恢复力约束的分布式储能优化规划方法,以保证重要用户的恢复力为前提条件,采用双层耦合规划模型。内层模型在满足电网运行的潮流约束下,灵活地控制重要用户侧分布式储能参与需求侧响应,实现用电成本与动作频次最小的目标,采用竞争深度Q网络(dueling deep Q network,DDQN)结构的深度增强学习方法进行求解,内层模型将分布式储能响应策略传递给外层模型;外层模型进一步基于重要用户的恢复力约束和投资收益校核分布式储能的配置方案,通过双层优化耦合反馈,最终实现基于恢复力约束的分布式储能优化规划。通过分时电价引导分布式储能等重要互动资源参与配电网的优化运行,保证重要用户电力供应连续性的同时给用户明显的投资收益。最后以某10 kV变电站的重要用户储能优化配置为例,分析了所提方法的有效性。展开更多
在双碳战略和相关能源政策背景下,为平抑规模化接入分布式能源的潮流随机波动,分布式储能将在配电网逐步推广应用。建立适应随机序贯决策的分布式储能规划模型,将电压幅值、储能动作频次和用电成本作为即时回报优化分布式储能响应,基于...在双碳战略和相关能源政策背景下,为平抑规模化接入分布式能源的潮流随机波动,分布式储能将在配电网逐步推广应用。建立适应随机序贯决策的分布式储能规划模型,将电压幅值、储能动作频次和用电成本作为即时回报优化分布式储能响应,基于优化的分布式储能组合序贯动作进行储能参数配置;基于竞争深度Q网络(dueling deep Q network,DDQN)的深度增强学习方法开展自学习优化,并以全寿命周期投资收益最大化确定分布式储能布点与配置方案。最后在IEEE33节点算例系统接入分布式光伏和储能的条件下,论证了方法的合理有效性。展开更多
文摘提出基于恢复力约束的分布式储能优化规划方法,以保证重要用户的恢复力为前提条件,采用双层耦合规划模型。内层模型在满足电网运行的潮流约束下,灵活地控制重要用户侧分布式储能参与需求侧响应,实现用电成本与动作频次最小的目标,采用竞争深度Q网络(dueling deep Q network,DDQN)结构的深度增强学习方法进行求解,内层模型将分布式储能响应策略传递给外层模型;外层模型进一步基于重要用户的恢复力约束和投资收益校核分布式储能的配置方案,通过双层优化耦合反馈,最终实现基于恢复力约束的分布式储能优化规划。通过分时电价引导分布式储能等重要互动资源参与配电网的优化运行,保证重要用户电力供应连续性的同时给用户明显的投资收益。最后以某10 kV变电站的重要用户储能优化配置为例,分析了所提方法的有效性。
文摘在双碳战略和相关能源政策背景下,为平抑规模化接入分布式能源的潮流随机波动,分布式储能将在配电网逐步推广应用。建立适应随机序贯决策的分布式储能规划模型,将电压幅值、储能动作频次和用电成本作为即时回报优化分布式储能响应,基于优化的分布式储能组合序贯动作进行储能参数配置;基于竞争深度Q网络(dueling deep Q network,DDQN)的深度增强学习方法开展自学习优化,并以全寿命周期投资收益最大化确定分布式储能布点与配置方案。最后在IEEE33节点算例系统接入分布式光伏和储能的条件下,论证了方法的合理有效性。