期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
竞争性自适应重加权算法和相关系数法提取特征波长检测番茄叶片真菌病害 被引量:33
1
作者 王海龙 杨国国 +2 位作者 张瑜 鲍一丹 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第7期2115-2119,共5页
基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片... 基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片感兴趣区域(ROI)的光谱反射率值,作为番茄叶片灰霉病鉴别模型的输入来建立支持向量机(SVM)鉴别模型,训练集和验证集的鉴别率都是100%。研究进一步通过CARS和CA提取特征波长,分别得到5个(554,694,696,738和880nm)和4个(527,555,571和633nm)特征波长,然后分别建立CARS-SVM和CA-SVM鉴别模型。结果显示,CARS-SVM模型中训练集和验证集的鉴别率都是100%,CA-SVM模型中训练集和验证集的鉴别率分别是91.59%和92.45%。以上结果说明了从可见-近红外高光谱图像中提取的光谱反射率值用于检测番茄叶片的灰霉病是可行的。 展开更多
关键词 高光谱成像技术 竞争性自适应加权算法 相关系数法 支持向量机 番茄 灰霉病
在线阅读 下载PDF
中红外光谱技术结合竞争性自适应重加权算法快速分析白酒风味组分 被引量:6
2
作者 宋艳 杨洋 +4 位作者 张学平 许驰 王毓 蔡亮 李子文 《中国酿造》 CAS 北大核心 2022年第12期230-234,共5页
采用中红外光谱分析技术结合竞争性自适应重加权算法(CARS)对浓香型白酒基酒中的乳酸乙酯和乙酸乙酯的特征波长变量进行筛选后,建立偏最小二乘法(PLS)模型,并对其进行验证。结果表明,采用中红外光谱分析技术剔除明显噪声区域建立的PLS... 采用中红外光谱分析技术结合竞争性自适应重加权算法(CARS)对浓香型白酒基酒中的乳酸乙酯和乙酸乙酯的特征波长变量进行筛选后,建立偏最小二乘法(PLS)模型,并对其进行验证。结果表明,采用中红外光谱分析技术剔除明显噪声区域建立的PLS模型效果较好,而经CARS法进行特征波长选择后建立的CARS-PLS模型效果优于PLS模型,乙酸乙酯和乳酸乙酯的CARS-PLS模型相关系数R^(2)分别为0.995、0.989,预测均方根误差(RMSEP)分别为12.80、4.54,相对分析误差(RPD)分别为8.78及8.60,模型经独立验证均取得了较高的预测精度,验证数据相关系数R^(2)分别为0.994及0.992,RMSEP分别为13.55及4.86。该模型有较高的准确度及稳定性,能够用于白酒基酒中的乳酸乙酯和乙酸乙酯的快速分析,可为白酒酿造过程的质量把控提供技术方法。 展开更多
关键词 竞争性自适应加权变量算法 白酒基酒 中红外光谱分析技术 波长变量选择 定量分析
在线阅读 下载PDF
面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究 被引量:10
3
作者 程惠珠 杨婉琪 +2 位作者 李福生 马骞 赵彦春 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第12期3742-3746,共5页
研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测... 研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测试标准样品的荧光光谱并建立校准曲线,通过反演计算得到待测样品的元素含量。由于样品元素间存在基体效应,以及荧光谱特征峰存在叠加干扰,未经优化的校准曲线的线性度较差,这给反演计算来困难。为了解决上述问题,分别利用小波变换、非对称加权惩罚最小二乘法(arPLS)对光谱进行去噪和扣除本底基线,提高校准曲线的决定系数(R2);运用竞争性自适应重加权算法(CARS),针对不同目标元素优化变量选取;进一步地,基于选取的变量建立粒子群算法(PSO)优化的支持向量机回归(SVR)模型,并通过该模型反演计算各元素含量,提高定量分析的准确度和预测的泛化能力。实验结果显示,经过小波去噪和arPLS本底扣除后的校准曲线的决定系数(R2)有明显提升,Cr、Cu、Zn、As、Pb分别从0.965、0.979、0.971、0.794、0.915提高为0.979、0.987、0.981、0.828、0.953;通过CARS选取的谱线变量的个数大幅度减少,从2 048个通道降低到30个以下,为原来变量个数的1.5%,提高了变量选择的精准性;与偏最小二乘法(PLS)、未优化的SVR模型进行对比,采用CARS变量选择和PSO优化的SVR模型进行含量预测,训练集RC2与测试集RP2的决定系数分别在0.99、0.90以上,预测准确性有明显提高。因此,所提出的竞争性自适应重加权算法和PSO优化的SVR定量分析模型对于土壤重金属元素定量分析具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 土壤重金属 竞争性自适应加权算法 粒子群算法 支持向量机回归模型
在线阅读 下载PDF
联合FOD-sCARS的土壤有机质高光谱机器学习估测模型
4
作者 吴梦红 窦森 +5 位作者 林楠 姜然哲 陈思 李佳璇 付佳伟 梅显军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期204-212,共9页
土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建... 土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建立SOM估测模型是现在较为合理有效的方法。为探索解决目前高光谱遥感影像建立SOM含量估测模型存在光谱数据冗余、光谱数据特征提取精度低、小样本模型泛化能力不强的问题,选择位于青海省湟中县的研究区,共采集67个土壤样本。获取资源1号02D(ZY1-02D)高光谱遥感影像并进行预处理得到样点像元光谱数据,采用分数阶微分变换(FOD)方法挖掘与SOM含量具有响应关系的敏感波段,以0.2为一个步长,利用相关性阈值法对比分析不同阶次微分处理数据挖掘能力;运用稳定性竞争性自适应重加权采样算法(sCARS)去除高光谱冗余数据获取建模特征波段,选择随机森林(RF)、极端梯度提升树、极限学习机和岭回归机器学习作为建模算法,以全波段和特征波段光谱数据分别作为模型输入变量构建SOM估测模型进行高光谱反演研究工作;最后根据最优特征变量和建模算法,基于ZY1-02D遥感影像进行了SOM空间分布制图。结果表明:采用FOD变换相比整数阶可以大大提高波段与SOM含量间的相关性,挖掘出更多细微的与SOM含量产生响应关系的光谱波段,其中0.8阶微分变换效果最优,较原始波段相比相关系数最大值提高了0.546;相较于全波段光谱数据,采用sCARS特征提取方法获取特征波段构建模型的估测精度得到较大提升,说明sCARS可以有效提升建模数据的质量,提升模型预测精度。建模算法中RF表现最优,R_(p)^(2)(模型决定系数)达到0.766,RPD达到1.86,较全波段建模结果R_(p)^(2)提升约7.58%;基于FOD-sCARS和RF实现了区域SOM含量估测制图。研究进一步验证利用星载高光谱遥感影像是实现区域SOM估测制图的可靠途径,研究结果可为估测区域SOM含量提供新思路,为利用星载高光谱遥感影像绘制SOM含量空间分布图提供了数据支持。 展开更多
关键词 高光谱遥感影像 分数阶微分变换 稳定性竞争性自适应加权采样算法 土壤有机质 随机森林
在线阅读 下载PDF
近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定 被引量:40
5
作者 李江波 彭彦昆 +1 位作者 陈立平 黄文倩 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第5期1264-1269,共6页
高光谱数据量大、维数高且原始光谱噪声明显、散射严重等特征导致光谱建模时关键波长变量提取困难。基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。鸭梨作为研究对象。采用决定系数r2、预测均方根误... 高光谱数据量大、维数高且原始光谱噪声明显、散射严重等特征导致光谱建模时关键波长变量提取困难。基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。鸭梨作为研究对象。采用决定系数r2、预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。 展开更多
关键词 近红外高光谱 可溶性固形物 鸭梨 变量选择 竞争性自适应加权算法
在线阅读 下载PDF
CARS-SPA算法结合高光谱检测马铃薯还原糖含量 被引量:15
6
作者 姜微 房俊龙 +1 位作者 王树文 王润涛 《东北农业大学学报》 CAS CSCD 北大核心 2016年第2期88-95,共8页
以竞争性重加权自适应选择算法(CARS)结合连续投影算法(SPA)选择马铃薯还原糖含量特征波长,共制备238个样本,比色法测定马铃薯还原糖含量,选择190个样本作校正集,48个样本作验证集,与全光谱和经典变量提取方法比较。结果表明,CARS-SPA... 以竞争性重加权自适应选择算法(CARS)结合连续投影算法(SPA)选择马铃薯还原糖含量特征波长,共制备238个样本,比色法测定马铃薯还原糖含量,选择190个样本作校正集,48个样本作验证集,与全光谱和经典变量提取方法比较。结果表明,CARS-SPA算法筛选波段效果最佳,相比于全谱建模其参与建模波长点由203个减少到17个,模型验证集决定系数r^2由0.8464提高到0.8965,均方根误差(RMSEP)由0.0758降到0.0490。结果表明,采用CARS-SPA结合高光谱成像技术检测马铃薯还原糖含量结果可行。 展开更多
关键词 高光谱 竞争性自适应加权采样算法 连续投影算法 马铃薯 还原糖
在线阅读 下载PDF
基于CARS-SPA特征提取的黄水淀粉近红外光谱定量模型优化 被引量:10
7
作者 母雯竹 张贵宇 +2 位作者 张维 姚瑞 付妮 《食品科学》 EI CAS CSCD 北大核心 2024年第19期8-14,共7页
为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测... 为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测模型。使用决定系数(R^(2))和预测均方误差(root mean square error of prediction,RMSEP)评价模型性能。光谱中含有大量冗余信息,为有效提升黄水淀粉含量检测精度和优化模型效率,将不同特征提取方法的优点结合,发现使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合连续投影算法(successive projections algorithm,SPA)提取的光谱特征所建立的PLSR模型,相较于未使用特征提取或仅使用单一特征提取所建立的模型均有明显提升。在单一使用CARS时,模型的R^(2)为0.9654,RMSEP为0.2012%,而结合SPA后,R2为0.9738,RMSEP为0.1748%。此外,光谱维度从2203个减少到了126个,不仅提高了预测精度,也提升了建模效率。本研究提出的方法可作为黄水近红外定量模型优化的有效途径。 展开更多
关键词 黄水 近红外光谱 竞争性自适应加权算法 连续投影算法 偏最小二乘回归法
在线阅读 下载PDF
优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析 被引量:30
8
作者 袁自然 魏立飞 +2 位作者 张杨熙 余铭 闫芯茹 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第2期567-573,共7页
土壤重金属污染是由于人类活动导致重金属物质大量残留在土壤中,超过土壤环境承载力,这种现象将造成土壤质量退化、生态环境恶化。高光谱遥感可以实现图谱合一,能有效地识别出土壤中不同元素的异常情况。为实现农田土壤重金属高效、准... 土壤重金属污染是由于人类活动导致重金属物质大量残留在土壤中,超过土壤环境承载力,这种现象将造成土壤质量退化、生态环境恶化。高光谱遥感可以实现图谱合一,能有效地识别出土壤中不同元素的异常情况。为实现农田土壤重金属高效、准确监测,提出了一种特征提高型竞争性自适应重加权算法(CARS)选取特征波段的粒子群算法(PSO)优化支持向量机(SVM)农田土壤重金属砷(As)含量高光谱估测分析方法。利用CARS对暗室实测光谱值进行粗选;利用一阶导数(FD)、高斯滤波(GF)、归一化(N)进行特征提高;在特征精选阶段利用皮尔逊相关系数(PCC)求取预处理后的光谱指标与土壤重金属As之间的相关系数,获取相关性大于0.6的波段作为特征波段;最后利用PSO对SVM所选择的核函数σ和正则化参数γ进行优化,以均方根误差(RMSE)作为适应度函数,通过迭代最优适应度得到SVM最优参数值。选择江汉平原典型区域洪湖市燕窝镇的土壤为研究对象,预测结果表明基于PSO-SVM算法其验证集的决定系数R 2为0.9823,均方根误差RMSE为0.5216,平均绝对误差MAE为0.4164。主要结论如下:PSO算法优化SVM参数,通过迭代更新个体极值和群体极值,可以迅速获取全局最优解,与支持向量机回归(SVMR)和随机森林回归(RFR)相比,在预测精度有了较大的提高;特征提高型CARS算法可以有效剔除无关信息,提高相关性,且选取波段少,模型简单,大大提高了效率;可以实现土壤污染预警、满足精准农业需求、为后期重金属污染土地生态修复提供数据基础。 展开更多
关键词 高光谱遥感 土壤重金属 粒子群算法 特征波段 竞争性自适应加权算法
在线阅读 下载PDF
基于高光谱和CARS-IRIV算法的‘库尔勒香梨’可溶性固形物含量检测 被引量:13
9
作者 梁琨 刘全祥 +1 位作者 潘磊庆 沈明霞 《南京农业大学学报》 CAS CSCD 北大核心 2018年第4期760-766,共7页
[目的]利用高光谱技术实现‘库尔勒香梨’可溶性固形物含量的有效无损检测具有重要意义,但是高光谱数据通常噪声明显,大量无关信息变量和冗余信息变量的存在降低了模型的预测精度。本文旨在探究对高光谱数据特征变量筛选的有效方法来实... [目的]利用高光谱技术实现‘库尔勒香梨’可溶性固形物含量的有效无损检测具有重要意义,但是高光谱数据通常噪声明显,大量无关信息变量和冗余信息变量的存在降低了模型的预测精度。本文旨在探究对高光谱数据特征变量筛选的有效方法来实现‘库尔勒香梨’可溶性固形物含量的快速检测。[方法]以‘库尔勒香梨’可溶性固形物含量(SSC)为研究指标,利用高光谱成像技术采集样本400~1 000 nm波长的漫反射光谱,对样本感兴趣区域(ROI)的光谱进行预处理,分别采用竞争性自适应重加权算法(CARS)、迭代保留信息变量算法(IRIV)以及CARS-IRIV算法筛选特征变量,基于不同筛选方法分别建立偏最小二乘(PLS)与最小二乘支持向量机(LS-SVM)预测模型,以预测集相关系数(Rp)、预测均方根误差(RMSEP)和预测相对分析误差(RPD)值对模型进行评价。[结果]CARS-IRIV算法可以有效减少CARS算法提取的变量个数,并稳定模型预测精度。LS-SVM模型预测结果优于PLS模型,在LS-SVM模型中CARS-IRIV-LS-SVM预测精度最高,Rp、RMSEP和RPD值分别为0.889、0.300和2.823。[结论]CARS-IRIV是一种有效的高光谱特征变量筛选算法,在提高预测精度的同时简化了模型的运算,CARS-IRIV-LS-SVM模型结合高光谱成像技术可以对‘库尔勒香梨’SSC进行快速有效的无损检测。 展开更多
关键词 高光谱成像技术 库尔勒香梨 可溶性固形物 竞争性自适应加权算法 迭代保留信息变量算法
在线阅读 下载PDF
基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型 被引量:36
10
作者 孙俊 丛孙丽 +3 位作者 毛罕平 武小红 张晓东 汪沛 《农业工程学报》 EI CAS CSCD 北大核心 2017年第5期178-184,共7页
为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项... 为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项式平滑(Savitzky-Golay,SG)结合标准变量变换(standard normalized variable,SNV)对高光谱数据去噪平滑。利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,并与逐步回归分析(stepwise regression,SR)及连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立油麦菜叶片全光谱数据、3种特征光谱数据与干基含水率的关系模型。结果表明,基于竞争性自适应加权算法波长选择的支持向量回归模型(CARS-SVR)效果最佳,但预测精度尚不够理想,故引入人工蜂群算法(artificial bee colony,ABC)优化模型的参数惩罚因子和核参数。最终,经人工蜂群算法优化后的模型(CARS-ABC-SVR)的预测集决定系数R2和均方根误差RMSE分别为0.9214和2.95%。因此,利用高光谱技术结合CARS-ABC-SVR模型预测油麦菜叶片水分含量是可行的。 展开更多
关键词 水分 算法 模型 高光谱 油麦菜 竞争性自适应加权算法 人工蜂群算法
在线阅读 下载PDF
X射线荧光光谱结合CARS变量筛选选择方法用于土壤中铅砷含量的测定 被引量:10
11
作者 江晓宇 李福生 +3 位作者 王清亚 罗杰 郝军 徐木强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1535-1540,共6页
X射线荧光光谱分析作为一种以化学计量学为基础的定量分析技术,所建立模型优劣对结果的预测准确性显得十分重要。竞争性自适应重加权算法(CARS)采用自适应重加权采样技术,利用交互验证选出互验证均方根误差(RMSECV)值最低原则,寻出最优... X射线荧光光谱分析作为一种以化学计量学为基础的定量分析技术,所建立模型优劣对结果的预测准确性显得十分重要。竞争性自适应重加权算法(CARS)采用自适应重加权采样技术,利用交互验证选出互验证均方根误差(RMSECV)值最低原则,寻出最优变量组合。为了进一步提高PLS模型的解释和预测能力,将竞争性自适应重加权算法(CARS)与X射线荧光光谱分析技术相结合,对土壤中重金属元素铅和砷进行特征波长变量筛选后建立偏最小二乘(PLS)模型。首先,利用CARS算法对铅含量密切相关的波长变量进行筛选,当采样次数为26次时,筛选出60个有效波长点;对砷含量密切相关的波长变量进行筛选,当采样次数为34次时,筛选出19个有效波长点;然后对优选出的波长点利用PLS方法分别建立土壤中铅和砷含量定量分析模型,并与经连续投影算法(SPA)及蒙特卡罗无信息变量消除(MC-UVE)方法波长变量筛选后所建立的PLS模型进行比较。结果显示:铅的CARS-PLS模型的预测集决定系数(R^(2))、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)和相对预测误差(RPD)分别为0.9955,2.5986,3.228和9.4011,砷的CARS-PLS模型的预测集R^(2),RMSECV,RMSEP和RPD分别为0.9899,3.0132,2.7371和8.2116;两元素的CARS-PLS模型性能均优于全波段PLS,SPA-PLS和MC-UVE-PLS模型。基于CARS-PLS的算法可以有效筛选出X射线荧光光谱特征波长点,在简化了建模复杂程度的同时,提高了模型的准确性和稳健性。 展开更多
关键词 竞争性自适应加权算法(cars) 偏最小二乘(PLS) 波长变量选择 X射线荧光光谱
在线阅读 下载PDF
基于GA和CARS的真空包装冷却羊肉细菌菌落总数高光谱检测 被引量:6
12
作者 段宏伟 朱荣光 +3 位作者 许卫东 邱园园 姚雪东 许程剑 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第3期847-852,共6页
在光谱建模过程中,采用不同的变量筛选算法进行光谱特征波段的提取已成为提高模型效果的重要方法。以真空包装的冷却羊肉细菌菌落总数作为研究指标,比较了两种变量筛选算法对其高光谱偏最小二乘(partial least squares,PLS)模型效果的... 在光谱建模过程中,采用不同的变量筛选算法进行光谱特征波段的提取已成为提高模型效果的重要方法。以真空包装的冷却羊肉细菌菌落总数作为研究指标,比较了两种变量筛选算法对其高光谱偏最小二乘(partial least squares,PLS)模型效果的影响。研究提取了样品肌肉感兴趣区域(ROIs)的羊肉光谱并进行预处理,进而采用遗传算法(genetic algorithm,GA)和竞争性自适应重加权法(competitive adaptive reweighted sampling,CARS)分别对预处理后的473~1 000 nm范围光谱进行特征波段的提取,对比分析了不同波段下羊肉细菌菌落总数的GA-PLS,CARS-PLS和全波段PLS(W-PLS)模型效果。结果表明,GA-PLS和CARS-PLS的模型效果均优于W-PLS,且CARS-PLS模型效果最好,其校正集的决定系数(R_c^2)和均方根误差(root mean square error,RMSEC)分别为0.96和0.29,交互验证的决定系数(R_(cv)~2)和均方根误差(root mean square errorof cross validation,RMSECV)分别为0.92和0.46,预测集的决定系数(R_p^2)和均方根误差(root mean square error of prediction,RMSEP)分别为0.92和0.47,预测相对分析误差(relative prediction deviation,RPD)为3.58。因此利用高光谱图像技术结合CARS-PLS可以实现羊肉细菌菌落总数快速无损准确检测。 展开更多
关键词 高光谱图像(HSI) 冷却羊肉 真空包装 细菌菌落总数 遗传算法(GA) 竞争性自适应加权法(cars)
在线阅读 下载PDF
基于人血浆荧光光谱与CARS-PLS-LDA的结直肠癌早期检测 被引量:3
13
作者 陈煜 邱智军 张彬 《分析测试学报》 CAS CSCD 北大核心 2021年第12期1690-1696,共7页
该文利用竞争性自适应加权算法(CARS)筛选重要的人血浆荧光光谱变量,并结合偏最小二乘法判别分析(PLS-LDA)建立了结直肠癌患者与非癌患者的分类模型,同时与全波长模型和基于平行因子分析(PARAFAC)建立的模型进行比较。从模型评价指标看,... 该文利用竞争性自适应加权算法(CARS)筛选重要的人血浆荧光光谱变量,并结合偏最小二乘法判别分析(PLS-LDA)建立了结直肠癌患者与非癌患者的分类模型,同时与全波长模型和基于平行因子分析(PARAFAC)建立的模型进行比较。从模型评价指标看,CARS-PLS-LDA的性能显著优于全波长模型和基于PARAFAC的模型。高波未稀释组和低波稀释组的荧光光谱结合CARS-PLS-LDA分类模型的AUC(Area under curve)值均高于0.9,可有效地识别结直肠癌患者。结果表明,CARS变量筛选能够明显改善结直肠癌分类模型的性能,有助于后续癌症临床诊断工具的开发与研究。 展开更多
关键词 荧光光谱 结直肠癌 竞争性自适应加权算法(cars) 偏最小二乘法判别分析(PLS-LDA)
在线阅读 下载PDF
激光诱导击穿光谱结合CARS变量选择方法定量检测倍硫磷含量 被引量:2
14
作者 刘津 甘兰萍 +1 位作者 孙通 刘木华 《分析测试学报》 CAS CSCD 北大核心 2017年第9期1099-1103,共5页
利用双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测。采用二通道高精度光谱仪采集不同浓度倍硫磷样品在206.28~481.77 nm波段的LIBS光谱,并对光谱进行多元散射校正(MSC)、标准正态变量变换(SNV)及3点平滑预处理,... 利用双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测。采用二通道高精度光谱仪采集不同浓度倍硫磷样品在206.28~481.77 nm波段的LIBS光谱,并对光谱进行多元散射校正(MSC)、标准正态变量变换(SNV)及3点平滑预处理,根据偏最小二乘(PLS)建模确定最优的预处理方法。在此基础上,利用竞争性自适应重加权算法(CARS)筛选与倍硫磷相关的重要变量,然后应用PLS回归建立溶液中倍硫磷含量的定量分析模型,并与单变量定量分析模型及未变量选择的PLS定量分析模型进行比较。结果表明,相比单变量定量分析模型及原始光谱PLS定量分析模型,CARS-PLS定量分析模型的性能更优,其模型的校正集和预测集的决定系数及平均相对误差分别为0.969 4、15.537%和0.995 9、5.016%。此外,与原始光谱PLS模型相比,CARS-PLS模型仅使用其中1.9%的波长变量,但预测集平均误差却由9.829%下降为5.016%。由此可见,LIBS技术检测溶液中的倍硫磷含量具有一定的可行性,且CARS方法能简化定量分析模型,提高模型的预测精度。 展开更多
关键词 激光诱导击穿光谱技术(LIBS) 偏最小二乘法(PLS) 竞争性自适应加权算法(cars) 倍硫磷
在线阅读 下载PDF
WCARS-ISPA火焰光谱特征选择的转炉炼钢终点预测 被引量:9
15
作者 朱雯琼 周木春 +1 位作者 赵琦 廖俊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第8期2332-2336,共5页
对转炉炼钢终点的实时精准控制能够有效提高钢铁产出的质量,炉口火焰光谱在炼钢不同时期的变化明显,对其进行分析处理并与机器学习方法相结合可有效用于炼钢终点的实时控制。针对炉口火焰光谱数据量大、现有方法对光谱特征提取在可信度... 对转炉炼钢终点的实时精准控制能够有效提高钢铁产出的质量,炉口火焰光谱在炼钢不同时期的变化明显,对其进行分析处理并与机器学习方法相结合可有效用于炼钢终点的实时控制。针对炉口火焰光谱数据量大、现有方法对光谱特征提取在可信度和实时性上不足的缺陷,提出一种基于窗口竞争性自适应重加权采样(WCARS)结合迭代式连续投影算法(ISPA)的光谱特征波长选择方法,该方法在有效解决模型过拟合问题的同时,能够降低高维数据计算的复杂度。将火焰光谱数据沿波长方向进行窗口划分后,使用CARS进行计算选出特征窗口波段,再将迭代式选择与传统连续投影算法相结合,通过重复迭代精选出特征波长,在此基础上使用支持向量机回归(SVR)建立炼钢终点碳含量预测模型。实验采集363组炼钢后期的炉口火焰光谱数据作为样本,并对其进行Savitzky-Golay平滑预处理。使用WCARS-ISPA算法从全光谱数据中选出10个特征波长作为SVR模型的输入,碳含量为模型输出,Kennard-stone算法对训练集和测试集进行划分,选择碳含量的平均预测误差、预测误差在±2%以内的命中率以及运行30次的平均时间作为模型评价指标。实验结果显示,模型的平均碳含量预测误差为1.4132%,命中率高达90.63%,运行时间为0.019679 s。与使用全光谱和WCARS-ISPA,CARS-SPA,WCARS和SPA四种不同特征选择方法选出的特征波长建模得到的结果进行对比,基于WCARS-ISPA方法选出的特征波长建立的终点碳含量预测模型误差最小、命中率最高。提出一种新的炉口火焰光谱特征波长提取方法,使用窗口竞争性自适应重加权采样结合迭代式连续投影算法选取特征波长,并在此基础上建立转炉炼钢终点碳含量预测模型,实验结果表明,该方法能够有效提取火焰光谱特征,所建模型能够对转炉炼钢终点进行准确预测,满足工业生产的实时控制要求,为实际生产提供可靠帮助。 展开更多
关键词 转炉炼钢 火焰光谱 窗口竞争性自适应加权采样 迭代式连续投影算法 终点预测
在线阅读 下载PDF
基于CARS-MIV-SVR的库尔勒香梨可溶性固体含量预测方法 被引量:6
16
作者 朱晓琳 李光辉 张萌 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第11期3547-3552,共6页
为了实现库尔勒香梨依据可溶性固体含量(SSC)分级定等和按质论价,推动采后处理向标准化、产业化方向健康发展,利用高光谱成像技术研究出了一种快速、有效、无损检测库尔勒香梨SSC的方法。以表面无损伤的157个库尔勒香梨作为研究样本,应... 为了实现库尔勒香梨依据可溶性固体含量(SSC)分级定等和按质论价,推动采后处理向标准化、产业化方向健康发展,利用高光谱成像技术研究出了一种快速、有效、无损检测库尔勒香梨SSC的方法。以表面无损伤的157个库尔勒香梨作为研究样本,应用高光谱成像采集系统获取400~1 000nm波长范围内高光谱图像并用ENVI5.3软件提取感兴趣区域(ROI),获得高光谱数据。采用Kennard-Stone(KS)样本集划分方法将全部样本按照2∶1的比例划分为校正集(105)和预测集(52)。对比标准变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)和二阶导数(SD)等数据预处理方法对建模精度的影响,最终选用SNV方法对光谱曲线进行平滑去噪。该研究提出竞争性自适应重加权算法与平均影响值算法的组合算法(CARS-MIV)选择特征波长。在竞争性自适应重加权算法(CARS)方法中,建模样本由蒙特卡罗算法随机选择生成,变量回归系数会随之发生变化,因而回归系数的绝对值不能全面反映变量重要性,从而影响模型检测精度。为降低这种影响,应用平均影响值(MIV)算法对选出的自变量进行二次筛选,筛选出相关性较大的变量用以建模分析,并与CARS、连续投影算法(SPA)、蒙特卡罗无信息变量消除算法(MCUVE)等经典特征波长选择算法进行比较。最后分别以全波长(FS)光谱信息和四种特征波长选择方法得出的光谱信息作为输入矢量,应用支持向量回归(SVR)建立库尔勒香梨可溶性固体含量定量预测数学模型,以校正集相关系数(Rc)、校正集均方根误差(RMSEC)、预测集相关系数(Rp)和预测集均方根误差(RMSEP)四个参数来评估模型的预测精度。比较分析发现,CARS-MIV-SVR模型效果最佳,校正集相关系数(Rc)为0.985 94,预测集相关系数(Rp)达到0.946 31,校正集和预测集均方根误差分别为0.185 85和0.403 33。结果证明:CARS-MIV特征波长选择方法能够有效增强库尔勒香梨光谱数据特征波长选择的稳定性和精确性,提高模型的预测精度。利用高光谱技术结合CARS-MIV-SVR模型能够满足库尔勒香梨可溶性固体含量测定需求,实现库尔勒香梨的分级定等和按质论价。 展开更多
关键词 光谱分析 可溶性固体含量 变量选择 竞争性自适应加权算法与平均响应值算法的组合 支持向量回归
在线阅读 下载PDF
基于内标法和CARS变量优选的倍硫磷含量LIBS检测 被引量:5
17
作者 刘津 孙通 甘兰萍 《发光学报》 EI CAS CSCD 北大核心 2018年第5期737-744,共8页
利用共线双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测研究。采用石墨对倍硫磷溶液进行富集,利用双通道高精度光谱仪获取样品的LIBS光谱。以碳元素谱线(CⅠ247.856 nm)为内标对210~260 nm波段谱线进行校正,然后... 利用共线双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测研究。采用石墨对倍硫磷溶液进行富集,利用双通道高精度光谱仪获取样品的LIBS光谱。以碳元素谱线(CⅠ247.856 nm)为内标对210~260 nm波段谱线进行校正,然后利用竞争性自适应重加权算法(CARS)筛选与倍硫磷相关的重要波长变量,最后应用最小二乘支持向量机(LSSVM)建立倍硫磷含量的定标模型,并与基本定标法及内标法建立的单变量定标模型进行比较。研究结果表明,共线双脉冲LIBS技术可以用于溶液中的倍硫磷含量检测。基本定标法建立的最优定标模型的拟合度R2为0.935 04,预测集样品的平均预测相对误差(PRE)为41.50%;内标法建立的最优单变量定标模型的拟合度R2为0.993 61,预测集样品的平均PRE为14.91%;内标-CARS-LSSVM定标模型的拟合度R2为0.998 6,预测集样品的平均PRE为8.06%。对比上述3类定标模型,内标-CARS-LSSVM定标模型性能最优,内标法建立的定标模型次之,而基本定标法建立的定标模型最差。由此可知,CARS方法可以有效筛选倍硫磷相关的重要变量,内标法结合CARS及LSSVM方法可以改善定标模型性能,提高预测精度。 展开更多
关键词 激光诱导击穿光谱 内标法 竞争性自适应加权算法 最小二乘支持向量机 倍硫磷
在线阅读 下载PDF
激光诱导击穿光谱结合CARS-PLSR法快速定量检测绝缘子污秽 被引量:13
18
作者 王乃啸 王希林 +1 位作者 覃歆然 贾志东 《中国电机工程学报》 EI CSCD 北大核心 2020年第4期1378-1386,1428,共10页
绝缘子污秽度在线检测是实现泛在电力物联网战略中电力设备智能化的重要需求,是电力系统外绝缘安全可靠运行的重要措施,研究快速、准确的在线检测污秽度的方法对监测输电线路运行状态非常关键。该文利用激光诱导击穿光谱结合自适应重加... 绝缘子污秽度在线检测是实现泛在电力物联网战略中电力设备智能化的重要需求,是电力系统外绝缘安全可靠运行的重要措施,研究快速、准确的在线检测污秽度的方法对监测输电线路运行状态非常关键。该文利用激光诱导击穿光谱结合自适应重加权优化算法–偏最小二乘回归研究绝缘子表面污秽成分快速检测方法。利用不同的光谱预处理方法预处理光谱数据,采用自适应重加权算法优化选择待测元素光谱强度变量,应用偏最小二乘法回归建立人工污秽等值附盐密度与待测元素光谱强度的定量分析模型。结果显示,归一化预处理方法结合自适应重加权算法光谱变量优化选择方法可以提高偏最小二乘法的分析精度,有助于激光诱导击穿光谱技术实现绝缘子污秽成分的快速检测。 展开更多
关键词 绝缘子污秽成分 激光诱导击穿光谱 竞争性自适应加权算法 偏最小二乘回归
在线阅读 下载PDF
鲸鱼算法改进极限学习机的葡萄酒品质评价研究 被引量:3
19
作者 窦力 郑崴 +1 位作者 李柏秋 李斐 《食品与机械》 CSCD 北大核心 2024年第6期62-68,共7页
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通... [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.9445,GA-ELM的准确率为0.9290,PSO-ELM的准确率为0.9061,传统的ELM方法准确率为0.8177。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。 展开更多
关键词 近红外光谱 极限学习机 鲸鱼优化算法 特征波长 竞争性自适应加权采样法
在线阅读 下载PDF
基于CARS-SAA的土壤铵态氮含量高光谱反演
20
作者 汤能 肖志云 王生富 《农业与技术》 2023年第2期45-50,共6页
利用高光谱技术对河套灌区土壤铵态氮含量检测过程中,为降低高光谱数据中存在的冗余变量信息对模型预测精度的影响。本文针对河套灌区土壤铵态氮含量提出了一种竞争性自适应重加权算法(CARS)和模拟退火算法(SAA)相结合的特征变量筛选方... 利用高光谱技术对河套灌区土壤铵态氮含量检测过程中,为降低高光谱数据中存在的冗余变量信息对模型预测精度的影响。本文针对河套灌区土壤铵态氮含量提出了一种竞争性自适应重加权算法(CARS)和模拟退火算法(SAA)相结合的特征变量筛选方法,并建立偏最小二乘回归(PLSR)和随机森林回归(RF)相结合的预测模型(PLSR-RF、RF-PLSR)。结果表明,CARS-SAA能有效筛选变量个数和减小计算量,并稳定模型预测精度。其中,CARS-SAA-PLSR-RF模型的预测精度最佳,验证集的决定系数R 2为0.902、均方根误差RMSE为1.583mg·kg^(-1)、相对分析误差RPD为3.198。具有很好的预测效果,可知CARS-SAA是一种有效的高光谱特征变量筛选方法,在提高预测精度的同时简化了模型的运算。该模型结合高光谱技术可以对河套灌区土壤铵态氮含量进行快速有效的无损检测。 展开更多
关键词 高光谱 土壤铵态氮含量 竞争性自适应加权算法 模拟退火算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部