期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多层进化神经网络的立式振动式滚磨光整关系模型构建及工艺参数优化
1
作者 张燎原 李文辉 +4 位作者 温学杰 张演 李秀红 王海珠 杨胜强 《表面技术》 北大核心 2025年第16期131-140,共10页
目的构建高精度立式振动式滚磨光整加工工艺参数的关系模型,实现工艺参数优化。方法以TC4钛合金板材为试件开展正交实验,通过方差分析获取各工艺参数对表面粗糙度下降率的影响程度。将工艺参数作为输入,表面粗糙度下降率作为输出,通过... 目的构建高精度立式振动式滚磨光整加工工艺参数的关系模型,实现工艺参数优化。方法以TC4钛合金板材为试件开展正交实验,通过方差分析获取各工艺参数对表面粗糙度下降率的影响程度。将工艺参数作为输入,表面粗糙度下降率作为输出,通过数学回归以及神经网络的方法构建初始工艺参数关系模型。通过迭代训练隐含层确定神经网络的最优隐含层结构,采用遗传算法(GA)优化网络权重和偏置,构建多层进化神经网络(GA-MLP)关系模型,进一步将关系模型耦合遗传算法实现工艺参数优化。结果采用数学回归与传统神经网络构建的工艺参数关系模型预测精度为75.6%和76.4%,基于多层进化神经网络构建的关系模型预测精度可提升至96.6%。优化后的加工参数为振动频率25 Hz、偏心块相位差98°、上偏心块质量1.55 kg、下偏心块质量1.8 kg,在此工艺参数下加工可将试件表面粗糙度由0.976μm降低至0.311μm,表面粗糙度下降率达68.12%。结论提出的多层进化神经网络相较于传统的数学回归以及初始神经网络具有更高的预测精度,优化的工艺参数能够有效降低试件表面粗糙度并提升其下降率。研究结果为立式振动式滚磨光整加工工艺参数关系模型构建与参数优化提供了新的方法。 展开更多
关键词 立式振动式滚磨光整 工艺参数关系模型 神经网络 遗传算法 参数优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部