期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于窗口自注意力网络与YOLOv5融合的输电线路通道异物检测 被引量:1
1
作者 薛昂 姜恩宇 +2 位作者 张文涛 林顺富 米阳 《上海交通大学学报》 北大核心 2025年第3期413-423,共11页
针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的... 针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的能力.其次,改进自适应空间特征融合(ASFF)模块,增强多尺度特征融合能力.最后,考虑到真实框与预测框不匹配的问题,引入结构相似性交并比(SIoU),优化边界误差,提高小目标定位准确性.实验结果表明,本文模型对线路通道多目标入侵检测精度达到90.2%,且提升了小目标检测效果;与主流目标检测算法相比,可以更好地满足输电线路通道中的异物检测需求. 展开更多
关键词 智能化巡检 输电线路通道 目标检测 窗口自注意力网络 自适应空间特征融合
在线阅读 下载PDF
基于位移窗口自注意力网络和迁移学习的地震面波分离
2
作者 杨晨睿 沈鸿雁 +2 位作者 车晗 孙云鹏 刘帅 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第6期39-50,共12页
反射地震资料中的面波也携带了丰富的地质信息,充分利用这类面波解决地质问题的前提条件是将其完整地分离出来。针对现有深度学习方法没有充分利用面波与体波表现在时空域图像中的分布位置和纹理细节等问题,提出一种基于深度学习的地震... 反射地震资料中的面波也携带了丰富的地质信息,充分利用这类面波解决地质问题的前提条件是将其完整地分离出来。针对现有深度学习方法没有充分利用面波与体波表现在时空域图像中的分布位置和纹理细节等问题,提出一种基于深度学习的地震面波分离方法。通过融合位移窗口自注意力机制和U-net主干网络,构建出面波智能分离网络,并使用数据增广后的模拟数据与实际数据构建面波数据集来提升神经网络的泛化性;在充分利用面波全局数据特征的同时,为避免波场分离过程中的面波损伤问题,提出一种对边界、结构和纹理信息敏感的混合损失函数以进一步提高面波分离的质量。通过数值模拟地震记录测试了本文方法的正确性,进而将该方法应用于实际地震资料处理。研究结果表明,在模拟地震记录训练的模型基础上进行迁移学习,可进一步提升神经网络的泛化性;相较于低通滤波法和去噪卷积神经网络方法,本文方法分离的面波更为完整,能大幅度提高能量混叠区域的面波分离质量。 展开更多
关键词 地震信号处理 面波 波场分离与去噪 深度学习 窗口自注意力网络 U-net网络 迁移学习
在线阅读 下载PDF
基于窗口自注意力网络的单图像去雨算法 被引量:5
3
作者 高涛 文渊博 +1 位作者 陈婷 张静 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第5期613-623,共11页
单图像去雨研究旨在利用退化的雨图恢复出无雨图像,而现有的基于深度学习的去雨算法未能有效地利用雨图的全局性信息,导致去雨后的图像损失部分细节和结构信息.针对此问题,提出一种基于窗口自注意力网络(Swin Transformer)的单图像去雨... 单图像去雨研究旨在利用退化的雨图恢复出无雨图像,而现有的基于深度学习的去雨算法未能有效地利用雨图的全局性信息,导致去雨后的图像损失部分细节和结构信息.针对此问题,提出一种基于窗口自注意力网络(Swin Transformer)的单图像去雨算法.该算法网络主要包括浅层特征提取模块和深度特征提取网络两部分.前者利用上下文信息聚合输入来适应雨痕分布的多样性,进而提取雨图的浅层特征.后者利用Swin Transformer捕获全局性信息和像素点间的长距离依赖关系,并结合残差卷积和密集连接强化特征学习,最后通过全局残差卷积输出去雨图像.此外,提出一种同时约束图像边缘和区域相似性的综合损失函数来进一步提高去雨图像的质量.实验表明,与目前单图像去雨表现优秀的算法MSPFN、 MPRNet相比,该算法使去雨图像的峰值信噪比提高0.19 dB和2.17 dB,结构相似性提高3.433%和1.412%,同时网络模型参数量下降84.59%和34.53%,前向传播平均耗时减少21.25%和26.67%. 展开更多
关键词 计算机视觉 单图像去雨 窗口自注意力网络 残差网络 自注意力机制 空洞卷积
在线阅读 下载PDF
改进自注意力机制的滚动轴承寿命预测方法
4
作者 史竞成 吴占涛 +1 位作者 程军圣 杨宇 《噪声与振动控制》 北大核心 2025年第2期90-96,104,共8页
针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Wind... 针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Window Based Multi-head Self-attention,W-MSA)的基础上,提出概率窗口自注意力机制(Probwindow Based Multi-head Self-attention,PW-MSA);然后,针对多头信息不匹配和缺少局部信息的问题,采用Talking Head方法实现多头信息融合,并在前馈神经网络层加入深度可分离卷积提取局部信息,从而提升模型的预测精度。采用PHM2012轴承数据集将改进前后的自注意力机制模型进行比较,并和现有的先进预测模型对比,结果表明,改进自注意力机制模型可使预测精度提升13.04%。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 概率窗口自注意力机制 Transformer模型
在线阅读 下载PDF
基于卷积辅助自注意力的胸部疾病分类网络
5
作者 张自然 李锵 关欣 《浙江大学学报(工学版)》 北大核心 2025年第5期890-901,共12页
针对胸部X光影像中的病变大小不一,纹理复杂,且存在相互影响等问题,提出基于卷积辅助窗口自注意力的胸部X光影像疾病分类网络CAWSNet.使用Swin Transformer作为骨干网络,以窗口自注意力建模长距离视觉依赖关系,通过引入卷积辅助,在弥补... 针对胸部X光影像中的病变大小不一,纹理复杂,且存在相互影响等问题,提出基于卷积辅助窗口自注意力的胸部X光影像疾病分类网络CAWSNet.使用Swin Transformer作为骨干网络,以窗口自注意力建模长距离视觉依赖关系,通过引入卷积辅助,在弥补其缺陷的同时,强化局部特征提取能力.引入图像相对位置编码,通过有向相对位置的动态计算,帮助网络更好地建模像素间的位置关系.使用类别残差注意力,根据疾病类别来调整分类器关注的区域,突出有效信息,提高多标签分类能力.提出动态难度损失函数,解决不同疾病分类的难度差异大,数据集中正负样本不平衡的问题.在公开数据集ChestX-Ray14、CheXpert和MIMIC-CXR-JPG上的实验结果表明,提出CAWSNet的AUC分数分别达到0.853、0.898和0.819,表明该网络在胸部X光影像疾病诊断中的有效性和鲁棒性. 展开更多
关键词 胸部X光图像分类 窗口自注意力 卷积 图像相对位置编码 动态难度损失函数
在线阅读 下载PDF
基于神经网络的加密恶意流量检测技术研究
6
作者 夏龙飞 张琪浩 +3 位作者 吴宪云 朱雪田 谷欣 田敏 《电子技术应用》 2025年第3期12-16,共5页
随着加密通信的广泛应用,传统基于内容分析的恶意流量检测方法逐渐失效,如何高效检测加密流量中的恶意行为成为网络安全领域的研究重点。研究提出了一种基于神经网络的加密恶意流量检测方法,通过深度学习模型实现恶意加密流量的分类。首... 随着加密通信的广泛应用,传统基于内容分析的恶意流量检测方法逐渐失效,如何高效检测加密流量中的恶意行为成为网络安全领域的研究重点。研究提出了一种基于神经网络的加密恶意流量检测方法,通过深度学习模型实现恶意加密流量的分类。首先,将网络流量预处理并提取关键特征,包括包大小分布、时间间隔及协议类型等,随后将特征映射为二维特征图(Feature Map),作为深度学习模型的输入。设计可伸缩的窗口自注意力机制,利用Transfomer神经网络模型对特征图进行分类,实现了对恶意流量的高效检测。实验结果表明,该方法在检测精度、召回率等方面均表现优异,为解决加密流量恶意行为检测问题提供了一种可行方案。 展开更多
关键词 加密恶意流量 可伸缩的窗口自注意力 深度学习 网络安全
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部