期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于概率稀疏自注意力的航空发动机剩余寿命预测 被引量:1
1
作者 王欣 黄佳琪 许雅玺 《科学技术与工程》 北大核心 2024年第6期2424-2433,共10页
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Atten... 航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。 展开更多
关键词 概率稀疏自注意力 剩余寿命预测 航空发动机 transformer 深度学习
在线阅读 下载PDF
考虑多变量相关性改进的风电场Transformer中长期预测模型 被引量:1
2
作者 李士哲 王霄慧 刘帅 《智慧电力》 北大核心 2024年第4期62-68,107,共8页
挖掘风电场多变量相关性对提高中长期的预测精度具有积极影响。针对Transformer模型在捕获多变量间相关性方面的不足,提出考虑多变量相关性的多变量中长期预测模型。首先,采用多变量独立嵌入(MIE)对风电场多变量进行独立建模;然后,使用... 挖掘风电场多变量相关性对提高中长期的预测精度具有积极影响。针对Transformer模型在捕获多变量间相关性方面的不足,提出考虑多变量相关性的多变量中长期预测模型。首先,采用多变量独立嵌入(MIE)对风电场多变量进行独立建模;然后,使用二维概率稀疏注意力(TPSA)提取时间和变量间的特征信息;最后,通过多层式编码器-解码器(MED)将多尺度的特征信息聚合,一次性输出预测结果。算例分析表明,所提模型与LSTM模型、Transformer模型、Informer模型相比,均方误差在各预测时长分别降低了42.58%~66.83%,32.58%~53.49%,14.38%~30.92%,并通过消融实验验证和分析了所提改进的有效性。 展开更多
关键词 多变量相关性 transformer模型 多变量独立嵌入 二维概率稀疏注意力 多层式编码器-解码器
在线阅读 下载PDF
改进自注意力机制的滚动轴承寿命预测方法
3
作者 史竞成 吴占涛 +1 位作者 程军圣 杨宇 《噪声与振动控制》 北大核心 2025年第2期90-96,104,共8页
针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Wind... 针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Window Based Multi-head Self-attention,W-MSA)的基础上,提出概率窗口自注意力机制(Probwindow Based Multi-head Self-attention,PW-MSA);然后,针对多头信息不匹配和缺少局部信息的问题,采用Talking Head方法实现多头信息融合,并在前馈神经网络层加入深度可分离卷积提取局部信息,从而提升模型的预测精度。采用PHM2012轴承数据集将改进前后的自注意力机制模型进行比较,并和现有的先进预测模型对比,结果表明,改进自注意力机制模型可使预测精度提升13.04%。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 概率窗口自注意力机制 transformer模型
在线阅读 下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:12
4
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 超短期风电功率预测 时间卷积网络 窗口概率稀疏transformer 窗口概率稀疏自注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部