期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Bi-GRU和空-谱信息融合的油菜菌核病侵染区域高光谱图像分割方法
1
作者 张京 赵泽瑄 +2 位作者 赵艳茹 卜泓超 吴星宇 《智慧农业(中英文)》 CSCD 2024年第2期40-48,共9页
[目的/意义]油菜菌核病是一种全球性的植物病害,可严重影响油菜的产量和品质,造成巨大的经济损失。为解决传统化学检测方法存在的操作复杂、污染环境、破坏样品及检测效率低等问题,构建了一种基于空-谱信息融合的双向门控循环网络(Bi-di... [目的/意义]油菜菌核病是一种全球性的植物病害,可严重影响油菜的产量和品质,造成巨大的经济损失。为解决传统化学检测方法存在的操作复杂、污染环境、破坏样品及检测效率低等问题,构建了一种基于空-谱信息融合的双向门控循环网络(Bi-directional Gate Recurrent Unit,Bi-GRU)模型,实现油菜菌核病侵染区域的高光谱图像分割。[方法]首先提取7×7像素邻域作为目标像素的空间特征,同时考虑全波段光谱特征,实现空间信息和光谱信息的有效融合。在此基础上结合Bi-GRU架构,实现序列数据中任意位置上特征的同时提取,避免了空-谱数据融合顺序对模型结果的影响。[结果和讨论]与卷积神经网络模型和长短时记忆网络模型相比,基于空-谱信息融合的Bi-GRU模型在平均精度、平均交并比、Kappa系数和Dice系数等评价指标上均获得显著提升。该模型的油菜菌核病检测平均精度达到93.7%,同时可以有效提取早期感染阶段的病斑区域。[结论]本研究可为油菜菌核病的高通量无损检测奠定基础,也为油菜菌核病的早期感染检测提供参考依据。 展开更多
关键词 油菜菌核病检测 高光图像分割 双向门控循环神经网络 空-谱信息融合 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部