期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
空间约束混合伽马模型的SAR影像分割算法 被引量:1
1
作者 石雪 《遥感信息》 CSCD 北大核心 2022年第1期70-79,共10页
为了避免斑点噪声的影响并实现高效且精确的合成孔径雷达(synthetic aperture radar,SAR)影像分割,提出一种结合空间约束混合伽马模型和共轭梯度的SAR影像分割方法。根据SAR影像强度统计特性,采用混合伽马模型建模像素强度统计分布。为... 为了避免斑点噪声的影响并实现高效且精确的合成孔径雷达(synthetic aperture radar,SAR)影像分割,提出一种结合空间约束混合伽马模型和共轭梯度的SAR影像分割方法。根据SAR影像强度统计特性,采用混合伽马模型建模像素强度统计分布。为了降低SAR影像斑点噪声的影响,利用局部像素类属性定义组份权重,构建空间约束混合伽马模型。考虑到伽马分布自身结构,构建条件期望函数,并采用共轭梯度估计模型参数,以实现高效且精确的SAR影像分割。为了验证所提出算法的分割性能,与对比算法进行分割实验,并定量和定性地评价分割结果。实验结果表明,所提出算法可获得高精度分割结果,且具有较高的分割效率。 展开更多
关键词 SAR影像分割 有限混合模型 空间约束混合伽马模型 条件期望函数 共轭方向
在线阅读 下载PDF
可变类空间约束高斯混合模型遥感图像分割 被引量:21
2
作者 赵泉华 石雪 +1 位作者 王玉 李玉 《通信学报》 EI CSCD 北大核心 2017年第2期34-43,共10页
针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此... 针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此基础上定义其先验概率;结合邻域像素类属性的后验概率和先验概率,定义噪声平滑因子,以提高算法的抗噪性;在参数求解过程中,分别采用可逆跳变马尔可夫链蒙特卡罗(RJMCMC,reversible jump Markov chain Monte Carlo)方法和最大似然(ML,maximum likelihood)方法估计类属数和模型参数;最后以最小化噪声平滑因子为准则获取最终分割结果。为了验证提出的分割方法,分别对模拟图像和全色遥感图像进行了可变类分割实验。实验结果表明提出方法的可行性和有效性。 展开更多
关键词 高斯混合模型 空间约束 最大似然估计 可逆跳变马尔可夫链蒙特卡罗 遥感图像分割
在线阅读 下载PDF
基于空间约束高斯混合模型的EPLL自然图像复原 被引量:4
3
作者 廖斌 刘鸳鸳 《量子电子学报》 CAS CSCD 北大核心 2015年第4期391-398,共8页
为了提高基于块先验的自然图像复原效果,有效去除图像中的噪声和模糊,提出了一种基于空间约束高斯混合模型的块似然对数期望(Expected patch log likelihood,EPLL)复原框架。基于图像块的空间分布信息,将图像块的空间约束高斯混合统计... 为了提高基于块先验的自然图像复原效果,有效去除图像中的噪声和模糊,提出了一种基于空间约束高斯混合模型的块似然对数期望(Expected patch log likelihood,EPLL)复原框架。基于图像块的空间分布信息,将图像块的空间约束高斯混合统计特性作为先验,在图像块复原的基础上实现整幅图像的全局优化复原。对比相关的图像复原方法,提出的方法去噪和去模糊效果更好,并且保留图像细节。利用客观性能指标对复原结果进行评价。实验结果表明,提出的方法有效易行,而且复原图像表现出良好的可视效果。 展开更多
关键词 图像处理 图像复原 空间约束高斯混合模型 先验 块似然对数期望
在线阅读 下载PDF
基于模糊形状上下文与局部向量相似性约束的配准算法 被引量:5
4
作者 马新科 杨扬 +1 位作者 杨昆 罗毅 《自动化学报》 EI CSCD 北大核心 2020年第2期342-357,共16页
非刚性点集配准研究是模式识别领域的一项重要基础研究.本文在当前流行的非刚性点集配准算法的基础上提出了两个主要贡献:1)模糊形状上下文(Fuzzy shape context, FSC)特征;2)基于局部向量特征的局部空间向量相似性约束项.本文首先进行... 非刚性点集配准研究是模式识别领域的一项重要基础研究.本文在当前流行的非刚性点集配准算法的基础上提出了两个主要贡献:1)模糊形状上下文(Fuzzy shape context, FSC)特征;2)基于局部向量特征的局部空间向量相似性约束项.本文首先进行基于特征互补的对应关系评估,在这一步骤中定义了模糊形状上下文特征,然后基于模糊形状上下文特征差异和全局特征差异设计了特征互补的高斯混合模型.其次,进行基于约束互补的空间变化更新.在这一步骤中,定义了局部向量特征,建立了局部空间向量相似性约束项.本文算法通过使用特征互补的高斯混合模型进行对应关系评估,并将配准问题转化为可以用期望最大化(Expectation maximization, EM)算法解决的参数优化问题,通过创建包含局部空间向量相似性约束项的能量方程优化了空间变换更新.本文首先测试了模糊形状上下文特征的检索率,然后采用公开数据集测试了算法在点集配准与图像配准的性能.在与当前流行的十种算法的对比实验中,本文算法均给出了精确的配准结果,并在大部分实验中精度超过了当前流行算法. 展开更多
关键词 非刚性点集配准 高斯混合模型 模糊形状上下文特征 局部向量特征 局部空间向量相似性约束
在线阅读 下载PDF
折棍变分贝叶斯图像分割算法 被引量:2
5
作者 董道广 芮国胜 田文飚 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第2期270-276,共7页
为提高图像分割的抗噪鲁棒性并解决分割数目的自适应确定问题,通过在聚类标签先验概率的折棍构造过程中建立Markov随机场,将空间相关性约束引入Dirichlet过程混合模型的概率建模,使聚类的空间平滑性得以增强,并采用变分推断方法获得聚... 为提高图像分割的抗噪鲁棒性并解决分割数目的自适应确定问题,通过在聚类标签先验概率的折棍构造过程中建立Markov随机场,将空间相关性约束引入Dirichlet过程混合模型的概率建模,使聚类的空间平滑性得以增强,并采用变分推断方法获得聚类标签的收敛解析解,提出一种基于折棍变分贝叶斯推断的图像分割算法,实现了对像素聚类标签和分割数目的同步自适应学习,避免了传统方法中因引入空间相关性约束而出现的计算复杂问题.基于Berkeley BSD500图像测试数据集的数值实验结果表明,该算法具有比现有的混合模型聚类图像分割算法更高的PRI值,且在低于0.1的噪声方差条件下表现出了更优的抗噪鲁棒性. 展开更多
关键词 混合模型 图像分割 空间相关性约束 贝叶斯推断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部