期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
三重集约束下的自适应SSLBoost分类方法
1
作者
原鑫
王振友
《计算机应用研究》
CSCD
北大核心
2020年第8期2376-2380,共5页
在分类问题中,常用的高效算法有半监督学习算法、Bagging算法和Boosting算法等,当标记数据很少、数据间差异较大时,很难找到有效的规则来分类。针对此问题提出了三重集约束下的Boosting分类算法,对标记数据、伪标记数据、无标记数据进...
在分类问题中,常用的高效算法有半监督学习算法、Bagging算法和Boosting算法等,当标记数据很少、数据间差异较大时,很难找到有效的规则来分类。针对此问题提出了三重集约束下的Boosting分类算法,对标记数据、伪标记数据、无标记数据进行三重约束划分;同时引入平衡函数将更新数据的近邻两点加权,确立数据空间稳定点;根据稳定点信息对分类器进行迭代,采用梯度下降法使得平衡函数收敛,得到最终的伪标记数据和分类器。经过UCI九个数据集的实验,验证了该算法更为高效、可行。
展开更多
关键词
BOOSTING算法
空间稳定点
三重集约束
梯度下降
平衡函数
在线阅读
下载PDF
职称材料
题名
三重集约束下的自适应SSLBoost分类方法
1
作者
原鑫
王振友
机构
广东工业大学应用数学学院
出处
《计算机应用研究》
CSCD
北大核心
2020年第8期2376-2380,共5页
基金
广州市科技计划资助项目(201707010435)。
文摘
在分类问题中,常用的高效算法有半监督学习算法、Bagging算法和Boosting算法等,当标记数据很少、数据间差异较大时,很难找到有效的规则来分类。针对此问题提出了三重集约束下的Boosting分类算法,对标记数据、伪标记数据、无标记数据进行三重约束划分;同时引入平衡函数将更新数据的近邻两点加权,确立数据空间稳定点;根据稳定点信息对分类器进行迭代,采用梯度下降法使得平衡函数收敛,得到最终的伪标记数据和分类器。经过UCI九个数据集的实验,验证了该算法更为高效、可行。
关键词
BOOSTING算法
空间稳定点
三重集约束
梯度下降
平衡函数
Keywords
Boosting algorithm
space stability point
triple set constraints
gradient descent
balanced function
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
三重集约束下的自适应SSLBoost分类方法
原鑫
王振友
《计算机应用研究》
CSCD
北大核心
2020
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部