期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于空间域图像生成和混合卷积神经网络的配电网故障选线方法 被引量:7
1
作者 郭威 史运涛 《电网技术》 EI CSCD 北大核心 2024年第3期1311-1321,共11页
传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪... 传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪光滑模型对零序电流信号进行降噪处理,减少外界环境的电磁干扰。其次,利用对称希尔伯特变换将一维时域信号转成二维空间域图像,图像的颜色、形状和纹理特征能够充分反映当前系统的运行状态。最后,将一维时域信号和二维空间域图像同步作为混合卷积神经网络的输入,充分挖掘系统的故障特征,利用Sigmoid函数实现故障选线。在辐射状配电网、IEEE-13节点模型、IEEE-34节点、StarSim仿真平台上模型上进行了实验验证。实验结果表明,该选线方法可以有效克服传统方法过度依赖主观特征选择、抗噪性能差等问题,能够在高阻接地、采样时间不同步、两点接地故障等极端情况下可靠地筛选出故障线路。 展开更多
关键词 故障选线 对称希尔伯特变换 混合卷积神经网络 空间域图像生成 优化的降噪光滑模型
在线阅读 下载PDF
空间转换与自适应灰度校正的低照度图像增强 被引量:10
2
作者 常戬 刘鑫姝 《计算机工程》 CAS CSCD 北大核心 2023年第6期193-200,207,共9页
在低照度场景下采集的图像存在整体亮度偏低、对比度较差、细节信息丢失等问题,影响其在图像增强应用领域中的性能。为提高低照度成像质量,并使图像结构完整且纹理细节自然清晰,提出一种空间转换与自适应灰度校正的低照度图像增强算法... 在低照度场景下采集的图像存在整体亮度偏低、对比度较差、细节信息丢失等问题,影响其在图像增强应用领域中的性能。为提高低照度成像质量,并使图像结构完整且纹理细节自然清晰,提出一种空间转换与自适应灰度校正的低照度图像增强算法。采用带有灰度校正的自适应压缩多尺度Retinex算法对原始图像进行处理,得到均衡化图像,避免在传统Retinex算法对图像进行全局处理时产生图像过亮或过暗的现象,通过空间转换方法处理获得的均衡化图像,分别得到频率域平滑图像和空间域锐化图像,以提高图像的整体亮度和对比度,从而保留图像中物体边缘的细节信息。在此基础上,采用多聚焦融合算法将原始图像、频率域平滑图像和空间域锐化图像进行融合,得到最终图像。实验结果表明,相比SSR、CLAHE、MBYC等算法,该算法的均值、方差、信息熵和平均梯度分别平均提升1.63%、0.89%、0.17%和1.91%,能有效提升低照度图像的亮度、清晰度和对比度,增强图像边缘信息和纹理细节信息。 展开更多
关键词 图像增强 RETINEX算法 空间转换 频率图像 空间域图像 多聚焦融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部