期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测 被引量:1
1
作者 聂鹏 杨程越 +2 位作者 彭新月 于家鹤 潘五九 《中国机械工程》 EI CAS CSCD 北大核心 2024年第10期1793-1801,共9页
针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信... 针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信号,信号经连续小波变换转换为小波尺度谱。搭建ResNet-50网络结构,从空间和通道双维度对卷积提取的特征图进行权重标定。研究结果表明,scSE可以从空间和通道两个维度做到增强有用特征,抑制无用特征,经scSE优化的网络结构识别准确度达到96.15%。 展开更多
关键词 刀具磨损 连续小波变换 空间和通道激励注意力机制 深度残差神经网络
在线阅读 下载PDF
融合空间与通道重构卷积和注意力的轻量型动物姿态估计
2
作者 宰清鹏 徐杨 《计算机工程与应用》 北大核心 2025年第6期282-294,共13页
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提... 动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提出融合空间与通道重构卷积和金字塔分割注意力的多尺度动物姿态估计网络SPANet。使用金字塔分割注意力与坐标注意力机制,重新设计了高分辨率网络的瓶颈层EPSAneck,在减轻过度使用大卷积核带来的计算成本的同时,增强了网络对有用特征的提取能力;提出了基于空间和通道重构卷积以及坐标注意力机制的SCCAblock基础模块,在显著减少计算冗余和内存访问的同时,增强了通道与空间之间的信息交互;利用反卷积模块对网络输出的特征融合方式进行重新设计,进一步提升了网络的准确率。实验结果表明,提出的网络模型相较于高分辨率网络在AP10K测试集上的平均精度提升了1.8个百分点,同时浮点运算量降低了48.5%、模型参数量减少了67.0%。在AnimalPose数据集上,浮点运算量降低49.5%,模型参数量降低67.0%。实验数据表明,该网络可在降低模型复杂度的同时实现预测精度的小范围提升。 展开更多
关键词 动物姿态估计 轻量型 高分辨率 注意力机制 空间通道重构卷积
在线阅读 下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:8
3
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
在线阅读 下载PDF
DenseNet结合空间通道注意力机制的环境声音分类 被引量:3
4
作者 董绍江 刘伟 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期179-187,共9页
音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通... 音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通道注意力机制。使用DenseNet对Log-Mel谱图进行特征提取,引入空间通道注意力机制使网络更加关注显著特征;为了解决数据不足导致的过拟合问题,将混合数据增强的方法应用于Log-Mel谱图,从而保证了数据的多样性;在2个公共数据集(ESC-50和ESC-10)验证所提方法的有效性。结果表明:所提的空间通道注意力机制模型能够使神经网络对环境声音的识别率分别达到79.3%(ESC-50)和94.3%(ESC-10)。 展开更多
关键词 环境声音分类 空间通道注意力机制 密集连接卷积网络 混合数据增强
在线阅读 下载PDF
通道-空间联合注意力机制的显著性检测模型 被引量:9
5
作者 陈维婧 周萍 +2 位作者 杨海燕 杨青 陈睿 《计算机工程与应用》 CSCD 北大核心 2021年第19期214-219,共6页
针对显著性区域突出不均匀和边缘不清晰导致显著性检测鲁棒性差等问题,提出了一种通道-空间联合注意力机制的显著性检测模型。改进了一种通道注意力机制,将特征图中的像素概率值逐像素相加以更好的获取通道中层间信息的关联性;在通道注... 针对显著性区域突出不均匀和边缘不清晰导致显著性检测鲁棒性差等问题,提出了一种通道-空间联合注意力机制的显著性检测模型。改进了一种通道注意力机制,将特征图中的像素概率值逐像素相加以更好的获取通道中层间信息的关联性;在通道注意力机制的基础上并行融入了空间注意力机制,对特征图的空间信息进行加权获得目标突出的显著性区域;将通道注意力机制与空间注意力机制输出的两个特征图加权融合反馈至通道-空间联合注意力机制,从而得到细粒度更高的显著图。实验结果表明,该模型在公开的数据集DUTS-TE和SOD上,使用F-measure和平均绝对误差作为评估标准均优于其他同类模型。 展开更多
关键词 显著性检测 通道注意力机制 空间注意力机制
在线阅读 下载PDF
基于空间通道注意力机制与多尺度融合的交通标志识别研究 被引量:9
6
作者 黄志强 李军 《南京邮电大学学报(自然科学版)》 北大核心 2022年第2期93-102,共10页
通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图... 通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图的语义信息,将第19层卷积层通过上采样后与第7层卷积层相连接,多尺度融合后输入YOLO层形成新的特征金字塔,以此提高小目标的识别率。同时,为使网络更加关注交通标志的细节信息,在特征金字塔网络中增添能够增强前景信息降低背景信息的空间通道注意力机制。使用Kmeans聚类算法对数据集作聚类处理,获得一组先验框。在长沙理工大学交通标志数据集上进行测试,实验结果表明,改进后算法的识别率达到91.8%,与YOLOV3-tiny算法相比提高了24.9个百分点,而与YOLOV3算法相比,每张图片的检测时间降低至0.133s,降低了49.6%,该算法具有较强的实时性和准确性。 展开更多
关键词 交通标志 轻量化网络 YOLOV3-3ctiny 多尺度融合 特征金字塔 空间通道注意力机制
在线阅读 下载PDF
增强小目标检测性能的通道自注意力机制算法研究 被引量:5
7
作者 尹芹 方晖 +3 位作者 王金东 王侃 晏天文 霍智勇 《南京邮电大学学报(自然科学版)》 北大核心 2022年第4期69-74,共6页
小目标检测是计算机视觉领域具有挑战性的问题。空间注意力和通道注意力机制的使用提高了目标检测网络的均值平均精度,但捕获小物体上下文信息的能力仍然有限,并且在小目标和大中型目标的检测精度上存在差距,难以感知小物体的位置。算... 小目标检测是计算机视觉领域具有挑战性的问题。空间注意力和通道注意力机制的使用提高了目标检测网络的均值平均精度,但捕获小物体上下文信息的能力仍然有限,并且在小目标和大中型目标的检测精度上存在差距,难以感知小物体的位置。算法构建了一种基于通道自注意力机制(Channel Self-Attention, CSA)的算法模块,将输入特征映射压缩后,运用自注意力机制建立特征通道间相关性,自适应地重新优化特征通道的响应,提升了捕获小物体远距离上下文信息的能力,从而提高了对小目标的检测精度。实验结果表明,在几乎不增加计算成本的情况下,CSA块能够为现有目标检测网络带来性能改进。在PASCAL VOC2007数据集上,采用通道自注意力机制的RetinaNet的mAP值分别比原始RetinaNet的mAP值高3.11个百分点。使用通道自注意力机制的MobileNetv2比原始的MobileNetv2 mAP值提高3.05个百分点。 展开更多
关键词 注意力机制 小目标检测 注意力 通道注意力 空间注意力
在线阅读 下载PDF
融合空洞空间金字塔池化和注意力的轻量化遥感影像道路提取 被引量:6
8
作者 刘志恒 岳子腾 +3 位作者 周绥平 江澄 节永师 陈雪梅 《航天返回与遥感》 CSCD 北大核心 2024年第1期111-122,共12页
针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块... 针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块,实现多尺度道路信息融合;再引入挤压激励通道注意力机制,增强网络特征表征质量;最后使用深度可分离卷积方法改进网络残差模块实现模型轻量化,以降低模型计算复杂度。在公开数据集上进行了模型性能测试,实验结果表明,文章所提算法的准确率、精确率、召回率、F1分数和平均交并比,相比原始HRNet分别提升了5.35%、2.15%、4.1%、3.15%和14.34%,且减少了36.1%的参数数量;相比其他网络,该算法突出了细小道路的特征,道路预测结果连续性、完整性好,并且模型小易于部署在实时检测设备中,有效改善了道路提取任务中错分和缺失的情况,是一种适应性更强、分割精度更高、更轻量化的多尺度道路提取算法。 展开更多
关键词 道路提取 空间金字塔池化 通道注意力机制 可分离卷积 高分辨率网络 遥感影像
在线阅读 下载PDF
融合空间十字注意力与通道注意力的语义分割网络 被引量:2
9
作者 吴文欢 张淏坤 《图学学报》 CSCD 北大核心 2023年第3期531-539,共9页
针对现有语义分割方法无法有效构建上下文语义关联关系以及所提取的语义特征表征能力不足的问题,提出了一种新的空间十字注意力与通道注意力相融合的语义分割网络。首先,采用空间十字注意力模块(SCCAM)聚合目标像素在水平和垂直方向上... 针对现有语义分割方法无法有效构建上下文语义关联关系以及所提取的语义特征表征能力不足的问题,提出了一种新的空间十字注意力与通道注意力相融合的语义分割网络。首先,采用空间十字注意力模块(SCCAM)聚合目标像素在水平和垂直方向上的上下文信息,进而高效地建立像素之间的非局部语义依赖关系。其次,在通道注意力模块(CAM)中引入多头注意力机制,在多个通道子空间上挖掘语义更显著的通道特征。在此基础上,通过融合空间与通道两个维度上的注意力特征,进一步增强特征的语义表征能力,提升语义分割精度。在Cityscapes数据集、PASCAL VOC2012数据集以及CamVid数据集上的实验结果表明,与其他先进语义分割方法相比,该网络模型具有更高的分割精度。 展开更多
关键词 语义分割 神经网络 注意力机制 空间注意力 通道注意力
在线阅读 下载PDF
基于混合域残差注意力网络的滚动轴承智能故障诊断方法 被引量:3
10
作者 贾立新 陈永毅 +1 位作者 倪洪杰 张丹 《高技术通讯》 CAS 北大核心 2024年第1期101-110,共10页
机械设备正朝着大型化、精密化和自动化的方向发展,机械系统也因此变得越来越复杂。考虑到机械系统可能会发生无特征的灾难性故障,因此机械故障的自动检测是一个巨大的挑战。然而,现有的故障检测方法在对高度复杂的工业系统进行故障类... 机械设备正朝着大型化、精密化和自动化的方向发展,机械系统也因此变得越来越复杂。考虑到机械系统可能会发生无特征的灾难性故障,因此机械故障的自动检测是一个巨大的挑战。然而,现有的故障检测方法在对高度复杂的工业系统进行故障类型识别时,误诊率较高,无法给出准确的故障诊断结果。针对这一问题,本文以滚动轴承这一机械设备关键部件作为研究对象,提出一种基于混合域残差注意力网络的故障诊断方法,旨在结合深度卷积神经网络自动学习表示的优点,并配合通道注意力机制和空间注意力机制的关键特征提取能力,提高故障检测性能。实验结果表明,所提出的方法能够准确地检测轴承故障类型,在准确度指标方面优于其他方法。 展开更多
关键词 故障诊断 滚动轴承 通道注意力机制 空间注意力机制 卷积神经网络(CNN)
在线阅读 下载PDF
基于空间弱化和通道增强注意力的行人重识别
11
作者 符进武 石林瑞 +2 位作者 黄祎婧 郭心悦 范自柱 《计算机工程与设计》 北大核心 2023年第4期1235-1241,共7页
针对现有行人重识别方法过于注重对行人图像强辨别性特征的提取导致模型缺乏鲁棒性,以及无法很好地结合空间和通道维度信息的问题,提出一种基于空间弱化和通道增强注意力的行人重识别方法。通过弱化对于高响应区域的注意,迫使模型学习... 针对现有行人重识别方法过于注重对行人图像强辨别性特征的提取导致模型缺乏鲁棒性,以及无法很好地结合空间和通道维度信息的问题,提出一种基于空间弱化和通道增强注意力的行人重识别方法。通过弱化对于高响应区域的注意,迫使模型学习更全面的特征信息,提升模型的泛化能力。嵌入通道注意力机制,通过学习特征通道之间的相关性,自动校准通道维度上的注意力。在Market-1501、DukeMTMC-ReID、CUHK03和MSMT17数据集上进行的实验结果表明,该方法具有较好的鲁棒性和识别准确率,能有效提高行人重识别性能。特别地,在CUHK03数据集中提升了7.6%的Rank-1精度和10.4%的mAP。 展开更多
关键词 行人重识别 注意力机制 空间弱化 通道 特征 强辨别性 鲁棒性
在线阅读 下载PDF
融合注意力机制的多模态脑肿瘤MR图像分割 被引量:1
12
作者 毋小省 杨奇鸿 +1 位作者 唐朝生 孙君顶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第9期1429-1438,共10页
针对在多模态MR图像分割中对不同模态特征间的关联性及全局和局部特征提取考虑不充分,导致分割精度降低的问题,基于注意力机制,提出多模态脑肿瘤MR图像分割方法.首先提出三重注意力模块,用于增强各模态特征间的关联性以及对感兴趣区域... 针对在多模态MR图像分割中对不同模态特征间的关联性及全局和局部特征提取考虑不充分,导致分割精度降低的问题,基于注意力机制,提出多模态脑肿瘤MR图像分割方法.首先提出三重注意力模块,用于增强各模态特征间的关联性以及对感兴趣区域的位置和边界信息精确判断;然后设计空间和通道注意力模块,用于双重捕获空间和通道上的全局及局部特征,增强对肿瘤组织结构信息的学习能力.在公开数据集BraTs18和BraTs19上的实验结果表明,分割全肿瘤时,所提方法的Dice系数、精确率、灵敏度和Hausdorff距离分别达到了90.62%,87.89%,90.08%和2.2583,均优于对比的同类方法. 展开更多
关键词 多模态图像 脑肿瘤分割 注意力机制 三重注意力 空间和通道注意力
在线阅读 下载PDF
混合扩张卷积和注意力机制的路面裂缝检测 被引量:6
13
作者 瞿中 李明 《计算机工程与设计》 北大核心 2023年第8期2425-2431,共7页
针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积... 针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积实现在不增加额外模块的前提下增大网络的感受野;在解码阶段,融合多层次和多尺度特征使最终预测结果更接近路面真实情况。实验结果表明,所提算法能够快速准确地对路面裂缝进行检测,具有较强的鲁棒性。 展开更多
关键词 裂缝检测 深度学习 卷积神经网络 编码-解码结构 混合扩张卷积 空间-通道注意力机制 多尺度特征融合
在线阅读 下载PDF
Attention-YOLO:引入注意力机制的YOLO检测算法 被引量:80
14
作者 徐诚极 王晓峰 杨亚东 《计算机工程与应用》 CSCD 北大核心 2019年第6期13-23,125,共12页
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加... 实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP_(@IoU[0.5:0.95])提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。 展开更多
关键词 目标检测 YOLOv3算法 Attention-YOLO算法 通道注意力机制 空间注意力机制
在线阅读 下载PDF
基于混合域注意力机制的服装关键点定位及属性预测算法 被引量:3
15
作者 雷冬冬 王俊英 +2 位作者 董方敏 臧兆祥 聂雄锋 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第4期28-35,共8页
针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention,RCCA)模块得到服装图像的每个像素的上下文信... 针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention,RCCA)模块得到服装图像的每个像素的上下文信息,从而捕获服装关键点之间潜在的空间几何关系,再融合服装图像的空间联系和通道交互信息来获得更好的服装关键点定位和属性预测效果。服装的空间特征由空间注意力分支网络在关键点热图的基础上学习得到,而通道交互信息通过局部跨通道交互策略生成通道注意力来捕获。试验结果表明,所提算法降低了服装关键点定位的归一化误差,并在一定程度上提高了服装的分类与属性预测效果。 展开更多
关键词 服装关键点定位 属性预测 混合域注意力机制 非局部空间连接 局部跨通道交互
在线阅读 下载PDF
基于双重注意力机制的图像超分辨重建算法 被引量:15
16
作者 李彬 王平 赵思逸 《图学学报》 CSCD 北大核心 2021年第2期206-215,共10页
近年来,卷积神经网络(CNN)在单幅图像超分辨率重建领域(SISR)展现出良好效果。深度网络可以在低分辨率图像和高分辨率图像之间建立复杂的映射,使得重建图像质量相对传统的方法取得巨大提升。由于现有SISR方法通过加深和加宽网络结构以... 近年来,卷积神经网络(CNN)在单幅图像超分辨率重建领域(SISR)展现出良好效果。深度网络可以在低分辨率图像和高分辨率图像之间建立复杂的映射,使得重建图像质量相对传统的方法取得巨大提升。由于现有SISR方法通过加深和加宽网络结构以增大卷积核的感受野,在具有不同重要性的空间域和通道域采用均等处理的方法,因此会导致大量的计算资源浪费在不重要的特征上。为了解决此问题,算法通过双重注意力模块捕捉通道域与空间域隐含的权重信息,以更加高效的分配计算资源,加快网络收敛,在网络中通过残差连接融合全局特征,不仅使得主干网络可以集中学习图像丢失的高频信息流,同时可以通过有效的特征监督加快网络收敛,为缓解MAE损失函数存在的缺陷,在算法中引入了一种特殊的Huber loss函数。在主流数据集上的实验结果表明,该算法相对现有的SISR算法在图像重建精度上有了明显的提高。 展开更多
关键词 单幅图像超分辨 特征监督 残差连接 通道注意力机制 空间注意力机制
在线阅读 下载PDF
基于注意力机制的跨分辨率行人重识别 被引量:8
17
作者 廖华年 徐新 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第3期605-612,共8页
行人图像分辨率的变化对现有的行人重识别方法带来了很大的挑战。针对这一问题,提出了一种新的跨分辨率行人重识别方法。该方法从两方面解决分辨率变化带来的识别困难:一方面通过通道注意力机制和空间注意力机制捕捉人物特征获取局部区... 行人图像分辨率的变化对现有的行人重识别方法带来了很大的挑战。针对这一问题,提出了一种新的跨分辨率行人重识别方法。该方法从两方面解决分辨率变化带来的识别困难:一方面通过通道注意力机制和空间注意力机制捕捉人物特征获取局部区域;另一方面通过核动态上采样模块恢复任意分辨率图像的局部区域信息。为了验证所提方法的有效性,在Market1501、CUHK03和CAVIAR三个公开数据集上开展了对比实验,实验结果表明:所提方法取得了最佳性能。 展开更多
关键词 行人重识别 通道注意力机制 空间注意力机制 图像超分辨率 上采样
在线阅读 下载PDF
引入注意力机制的多分辨率人体姿态估计研究 被引量:4
18
作者 张越 黄友锐 刘鹏坤 《计算机工程与应用》 CSCD 北大核心 2021年第8期126-132,共7页
针对人体姿态估计任务中多分辨率特征表征直接融合时存在无法有效利用特征图空间特征信息的问题,基于High-Resolution Net(HRNet)进行结构设计,构建出结合了通道域注意力和空间域注意力机制的多分辨率人体姿态估计网络GCT-Nonlocal Net(... 针对人体姿态估计任务中多分辨率特征表征直接融合时存在无法有效利用特征图空间特征信息的问题,基于High-Resolution Net(HRNet)进行结构设计,构建出结合了通道域注意力和空间域注意力机制的多分辨率人体姿态估计网络GCT-Nonlocal Net(GNNet),提出了一种基于注意力机制的多分辨率表征融合方法,在不同分辨率表征融合前由空间注意力提取出各分辨率表征更有用的空间特征信息来改进融合单元,使得各分辨率表征间的信息融合效果更佳,最终输出的高分辨率表征含有更丰富的特征信息,同时构造了Gateneck模块和Gateblock模块,其通过引入通道注意力更明确地对通道关系建模从而高效地提取通道信息。在MS COCOVAL 2017进行验证,结果显示提出的GNNet相较于SOTA级表现的HRNet在相当参数量与运算量的情况下获得了更高的准确度,mAP提高了1.4个百分点。实验结果表明,所提方法有效地提高了多分辨率特征表征融合效果。 展开更多
关键词 卷积神经网络 人体姿态估计 多分辨率特征表征融合 空间注意力机制 通道注意力机制
在线阅读 下载PDF
基于注意力机制的人群计数方法 被引量:5
19
作者 吴思 张旭光 方银锋 《中国安全科学学报》 CAS CSCD 北大核心 2022年第1期127-134,共8页
为准确预测固定场景中的人群计数,在人群分析领域,采用一种融合注意力机制的卷积神经网络(CNN)进行人群计数,该模块结合空间域注意力和通道域注意力,空间域注意力可以编码整个图像的像素级上下文信息,以更准确地表达像素级别的密度图,... 为准确预测固定场景中的人群计数,在人群分析领域,采用一种融合注意力机制的卷积神经网络(CNN)进行人群计数,该模块结合空间域注意力和通道域注意力,空间域注意力可以编码整个图像的像素级上下文信息,以更准确地表达像素级别的密度图,而通道域注意力可以在不同的通道中提取更多的区分特征使网络显著表达人群的局部区域,并在多个公开数据集上进行测试。结果表明:基于注意力机制的人群计数方法可以准确地估计拥挤场景中的人群数量,在平均完全误差和均方误差上均优于CSRNet。 展开更多
关键词 注意力机制 人群计数 空间注意力 通道注意力 密度图
在线阅读 下载PDF
基于注意力机制的端到端合成语音检测 被引量:6
20
作者 王锦阳 华光 黄双 《信号处理》 CSCD 北大核心 2022年第9期1975-1987,共13页
近年来深度伪造(Deepfake)技术的迅猛发展使合成语音的自然度和拟人度有了显著提升,对合成语音检测研究提出了更大挑战。本文将五种轻量级注意力模块中的机制改进为适用于语音序列的通道注意力机制和一维空间注意力机制,然后将模块分别... 近年来深度伪造(Deepfake)技术的迅猛发展使合成语音的自然度和拟人度有了显著提升,对合成语音检测研究提出了更大挑战。本文将五种轻量级注意力模块中的机制改进为适用于语音序列的通道注意力机制和一维空间注意力机制,然后将模块分别嵌入到Inc-TSSDNet网络中,提出基于注意力机制的端到端合成语音检测系统。结果表明,改进系统能够重点关注某些对于检测真伪更关键的通道或区域来提高检测性能,相比于基线模型,引入注意力机制的十种模型在增加的参数量较少的情况下,ASVspoof2019测试集的等错误率(Equal Error Rate,EER)和最小串联检测代价函数(Minimum Tandem Detection Cost Function,min t-DCF)都有所降低,其中在池化层之前嵌入CBAM(Convolutional Block Attention Module)的模型测试集EER最低且具有较强的泛化性,在池化层之前嵌入ECA(Efficient Channel Attention)模块的模型测试集min t-DCF最低且统计性能较基线模型有显著提升。 展开更多
关键词 合成语音检测 端到端 通道注意力机制 一维空间注意力机制
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部