期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8n的夜间车辆检测
1
作者 冯迎宾 刘艾妮 《沈阳理工大学学报》 2025年第2期1-6,12,共7页
针对夜间环境光照度低、光照分布不均匀导致车辆检测细节模糊以及车辆漏检和错检等问题,提出一种改进YOLOv8n的夜间目标检测算法。首先,引入图像增强算法Zero-DCE提高图像质量,减小光照度低、光照分布不均匀的影响,同时使用LSKNet作为... 针对夜间环境光照度低、光照分布不均匀导致车辆检测细节模糊以及车辆漏检和错检等问题,提出一种改进YOLOv8n的夜间目标检测算法。首先,引入图像增强算法Zero-DCE提高图像质量,减小光照度低、光照分布不均匀的影响,同时使用LSKNet作为主干网络,调整动态感受野,改善模型特征提取能力,提高检测精度;其次,采用空间和通道卷积(SSConv)模块融合C2f模块,减少特征之间的空间和通道冗余;最后,提出通用感知大内核卷积网络(SPPF_UniRepLKNet)替换SPPF模块,使用非膨胀卷积更好地提升感受野,从而有效捕捉模型的特征,提高模型的检测精度。实验结果表明,改进YOLOv8n算法的检测精确率和平均精度均值分别提高了4.7%和4.9%,适用于夜间环境下车辆检测。 展开更多
关键词 目标检测 图像增强 LSKNet 空间和通道卷积模块 通用感知大内核卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部