期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一类半空间分数阶微分方程边值问题的解
1
作者 温智华 王小东 魏毅强 《太原理工大学学报》 CAS 北大核心 2008年第6期640-642,共3页
研究了一类半空间分数阶微分方程的边值问题,证明了利用Adomian分解方法求解Caputo意义下的分数阶微分方程的收敛性,并利用Adomian分解方法得到了该问题的无穷级数形式的解。
关键词 分数微积分 空间分数阶微分方程 ADOMIAN分解方法
在线阅读 下载PDF
空间分数阶偏微分方程非标准有限差分方法的稳定性和收敛性 被引量:1
2
作者 王琦 刘子婷 《应用数学》 北大核心 2024年第1期159-170,共12页
本文研究空间分数阶偏微分方程非标准有限差分方法数值解的相关问题.采用Grünwald-Letnikov公式和平移Grünwald-Letnikov公式分别对两个空间分数阶导数进行离散.再运用带有时间和空间步长的分母函数构造非标准有限差分方法.... 本文研究空间分数阶偏微分方程非标准有限差分方法数值解的相关问题.采用Grünwald-Letnikov公式和平移Grünwald-Letnikov公式分别对两个空间分数阶导数进行离散.再运用带有时间和空间步长的分母函数构造非标准有限差分方法.进而利用von Neumann分析方法对差分格式的稳定性和收敛性进行研究,获得了一些新的结果.数值例子验证了非标准有限差分方法用于求解空间分数阶偏微分方程的有效性. 展开更多
关键词 空间分数微分方程 非标准有限差分方法 稳定性 收敛性
在线阅读 下载PDF
基于时间-空间分数阶偏微分方程的图像去噪模型 被引量:9
3
作者 黄果 许黎 +1 位作者 陈庆利 蒲亦非 《系统工程与电子技术》 EI CSCD 北大核心 2012年第8期1741-1752,共12页
为了在去噪的同时更多地保留图像的细节信息,将分数阶微积分理论和梯度下降流有效结合,提出了分数阶梯度下降流的概念,并证明了能量泛函的分数阶梯度下降流在一定微分阶次范围内是收敛的。在此基础上,将时间因素引入到改进的基于空间分... 为了在去噪的同时更多地保留图像的细节信息,将分数阶微积分理论和梯度下降流有效结合,提出了分数阶梯度下降流的概念,并证明了能量泛函的分数阶梯度下降流在一定微分阶次范围内是收敛的。在此基础上,将时间因素引入到改进的基于空间分数阶偏微分方程的去噪模型中,从而构建了基于时间-空间分数阶偏微分方程的去噪模型,该模型实现了在时间方向上和空间平面内的同时去噪。实验结果表明,提出的基于时间-空间分数阶偏微分方程的图像去噪模型较基于空间分数阶偏微分方程的图像去噪模型不仅可以提高信噪比,而且可以大幅减少图像获得最大信噪比所需要的迭代次数。 展开更多
关键词 分数微积分 时间-空间分数微分方程 分数梯度 变分法 泛函极值 图像去噪
在线阅读 下载PDF
一类带变系数的空间分数阶偏微分方程的Chebyshev拟谱分法(英文) 被引量:2
4
作者 杨银 《工程数学学报》 CSCD 北大核心 2014年第5期745-752,共8页
分数阶微分方程已经广泛地应用于工程等各个领域.在本文中,我们针对一类带变系数的空间分数阶偏微分方程,提出了一种Chebyshev拟谱的数值方法,其中分数阶导数是由Caputo分数阶导数定义.该方法能将空间分数阶偏微分方程转化为一个常微分... 分数阶微分方程已经广泛地应用于工程等各个领域.在本文中,我们针对一类带变系数的空间分数阶偏微分方程,提出了一种Chebyshev拟谱的数值方法,其中分数阶导数是由Caputo分数阶导数定义.该方法能将空间分数阶偏微分方程转化为一个常微分方程,然后在时间上用有限差分方法离散.数值实验表明该方法是有效的. 展开更多
关键词 空间分数微分方程 CHEBYSHEV多项式 拟谱方法 CAPUTO导数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部