期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CoordEF−YOLOv9t的煤矿井下人员行为识别
1
作者
潘红光
卫泽尘
+3 位作者
雷心宇
姚超修
蒋泽
张立斌
《工矿自动化》
北大核心
2025年第8期59-66,共8页
基于深度学习的人员行为识别方法在煤矿井下应用存在对多类别行为识别缺乏系统性分类架构、光线昏暗和低清晰度图像导致细节丢失、矿工姿态和视角差异引发特征形变等问题。提出一种煤矿井下人员行为识别模型CoordEF−YOLOv9t。该模型分...
基于深度学习的人员行为识别方法在煤矿井下应用存在对多类别行为识别缺乏系统性分类架构、光线昏暗和低清晰度图像导致细节丢失、矿工姿态和视角差异引发特征形变等问题。提出一种煤矿井下人员行为识别模型CoordEF−YOLOv9t。该模型分别从边缘细节与空间位置特征提取2个方面对YOLOv9t进行改进:YOLOv9t中RepNCSPELAN4模块的卷积操作在捕捉细微或模糊边缘时易导致细节模糊,针对该问题,设计了融合Sobel算子的边缘特征提取模块(EFEM),在RepNCSPELAN4模块中嵌入EFEM,增强主干网络与颈部网络对人体边缘细节的感知能力。传统卷积神经网络难以感知位置信息并充分学习人员位置与动作的空间特征,针对该问题,在颈部网络末端引入坐标卷积,提升模型对人员行为位置信息的感知能力。实验结果表明,CoordEF−YOLOv9t精确率P为73.4%,召回率R为73.7%,mAP@0.5为74.8%,mAP@0.5:0.95为61.1%,相较于YOLOv9t分别提升1.2%,3.2%,1.0%,2.1%;与RT−DETR,YOLOv11,YOLOv12等主流模型相比,CoordEF−YOLOv9t综合性能更优,能更精准地识别煤矿井下人员行为。
展开更多
关键词
井下人员行为识别
YOLOv9t
边缘
特征提取
空间位置特征提取
SOBEL算子
坐标卷积
在线阅读
下载PDF
职称材料
题名
基于CoordEF−YOLOv9t的煤矿井下人员行为识别
1
作者
潘红光
卫泽尘
雷心宇
姚超修
蒋泽
张立斌
机构
西安科技大学电气与控制工程学院
中煤科工集团常州研究院有限公司
天地(常州)自动化股份有限公司
出处
《工矿自动化》
北大核心
2025年第8期59-66,共8页
基金
国家自然科学基金联合基金(区域创新发展联合基金)重点支持项目(U24A2092)
陕西省教育厅科学研究计划服务地方专项——产业化培育项目(23JC049)
天地(常州)自动化股份有限公司科研项目(2024GY0002)。
文摘
基于深度学习的人员行为识别方法在煤矿井下应用存在对多类别行为识别缺乏系统性分类架构、光线昏暗和低清晰度图像导致细节丢失、矿工姿态和视角差异引发特征形变等问题。提出一种煤矿井下人员行为识别模型CoordEF−YOLOv9t。该模型分别从边缘细节与空间位置特征提取2个方面对YOLOv9t进行改进:YOLOv9t中RepNCSPELAN4模块的卷积操作在捕捉细微或模糊边缘时易导致细节模糊,针对该问题,设计了融合Sobel算子的边缘特征提取模块(EFEM),在RepNCSPELAN4模块中嵌入EFEM,增强主干网络与颈部网络对人体边缘细节的感知能力。传统卷积神经网络难以感知位置信息并充分学习人员位置与动作的空间特征,针对该问题,在颈部网络末端引入坐标卷积,提升模型对人员行为位置信息的感知能力。实验结果表明,CoordEF−YOLOv9t精确率P为73.4%,召回率R为73.7%,mAP@0.5为74.8%,mAP@0.5:0.95为61.1%,相较于YOLOv9t分别提升1.2%,3.2%,1.0%,2.1%;与RT−DETR,YOLOv11,YOLOv12等主流模型相比,CoordEF−YOLOv9t综合性能更优,能更精准地识别煤矿井下人员行为。
关键词
井下人员行为识别
YOLOv9t
边缘
特征提取
空间位置特征提取
SOBEL算子
坐标卷积
Keywords
underground personnel behavior recognition
YOLOv9t
edge feature extraction
spatial position feature extraction
Sobel operator
coordinate convolution
分类号
TD67 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CoordEF−YOLOv9t的煤矿井下人员行为识别
潘红光
卫泽尘
雷心宇
姚超修
蒋泽
张立斌
《工矿自动化》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部